CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Novel Micro-Scale Plastic Deformation Feature on a Bulk Metallic Glass Surface under Laser Shock Peening |
WEI Yan-Peng1, WEI Bing-Chen2, WANG Xi1, XU Guang-Yue2, LI Lei3, WU Xian-Qian1, SONG Hong-Wei1, HUANG Chen-Guang1** |
1Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Chinese Academy of Sciences, Beijing 100190 2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 3Sinosteel Corporation, Beijing 100190
|
|
Cite this article: |
WEI Yan-Peng, WEI Bing-Chen, WANG Xi et al 2013 Chin. Phys. Lett. 30 036201 |
|
|
Abstract Laser shocking peening is a widely applied surface treatment technique that can effectively improve the fatigue properties of metal parts. We observe many micro-scale arc plastic steps on the surface of Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glass subjected to the ultra-high pressure and strain rate induced by laser shock peening. The scanning electronic microscopy and atomic force microscopy show that the arc plastic step (APS) has an arc boundary, 50–300 nm step height, 5–50 μm radius and no preferable direction. These APSs have the ability to accommodate plastic deformation in the same way as shear band. This may indicate a new mechanism to accommodate the plastic deformation in amorphous metallic glass under high pressure, ultra-high strain rates, and short duration.
|
|
Received: 15 November 2012
Published: 29 March 2013
|
|
PACS: |
62.20.fq
|
(Plasticity and superplasticity)
|
|
62.50.Ef
|
(Shock wave effects in solids and liquids)
|
|
81.40.Np
|
(Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)
|
|
|
|
|
[1] Chen M W 2011 Npg. Asia Mater. 3 82 [2] Wang W H 2009 Adv. Mater. 21 4524 [3] Spaepen F 2006 Nat. Mater. 5 7 [4] Li H F, Wang Y B, Zheng Y F and Lin J P 2012 J. Biomed. Mater. Res. B 100 1721 [5] Chen B Q, Li Y, Yi M, Li R, Pang S J, Wang H and Zhang T 2012 Scr. Mater. 66 1057 [6] Wu G J, Li R, Liu Z Q, Chen B Q, Li Y, Cai Y and Zhang T 2012 Intermetallics 24 50 [7] Zhang Y, Wang W H and Greer A L 2006 Nat. Mater. 5 857 [8] Peyre P and Fabbro R 1995 Opt. Quantum Electron. 27 1213 [9] Guo Y B and Caslaru R 2011 J. Mater. Process. Tech. 211 729 [10] Reitz W 2002 Surf. Eng. 18 1 [11] Wei B C, Zhang T H, Zhang L C, Xing D M, Li W H and Liu Y 2007 Mat. Sci. Eng. A 449 962 [12] Gao Y F, Wang L, Bei H and Nieh T G 2011 Acta Mater. 59 4159 [13] Liu L F, Dai L H, Bai Y L, Wei B C and Eckert J 2005 Mater. Chem. Phys. 93 174 [14] Lee J Y, Han K H, Park J M, Chattopadhyay K, Kim W T and Kim D H 2006 Acta Mater. 54 5271 [15] Wu X, Huang C, Wang X and Song H 2011 Int. J. Impact Eng. 38 322 [16] Turneaure S J, Winey J M and Gupta Y M 2004 Appl. Phys. Lett. 84 1692 [17] Meng J X, Ling Z, Jiang M Q, Zhang H S and Dai L H 2008 Appl. Phys. Lett. 92 171909 [18] Mashimo T, Togo H, Zhang Y, Uemura Y, Kinoshita T, Kodama M and Kawamura Y 2006 Appl. Phys. Lett. 89 241904 [19] Yuan F, Prakash V and Lewandowski J J 2007 J. Mater. Res. 22 402 [20] Schuh C A, Lund A C and Nieh T G 2004 Acta Mater. 52 5879 [21] Schuh C A and Nieh T G 2004 J. Mater. Res. 19 46 [22] Dalla Torre F H, Klaumuenzer D, Maass R and Loeffler J F 2010 Acta Mater. 58 3742 [23] Jiang W H, Pinkerton F E and Atzmon M 2005 Acta Mater. 53 3469 [24] Georgarakis K, Aljerf M, Li Y, LeMoulec A, Charlot F, Yavari A R, Chornokhvostenko K, Tabachnikova E, Evangelakis G A, Miracle D B, Greer A L and Zhang T 2008 Appl. Phys. Lett. 93 031907 [25] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502 [26] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X and Wang W H 2007 Science 315 1385 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|