Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 034210    DOI: 10.1088/0256-307X/30/3/034210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities
YU Ping1, HU Ting1, QIU Chen1, SHEN Ao1, QIU Hui-Ye1, WANG Fan2, JIANG Xiao-Qing1, WANG Ming-Hua1, YANG Jian-Yi1,3**
1Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027
2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163
3Cyrus Tang Center for Sensor Materials and Applicatons, Zhejiang University, Hangzhou 310027
Cite this article:   
YU Ping, HU Ting, QIU Chen et al  2013 Chin. Phys. Lett. 30 034210
Download: PDF(549KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an ultracompact channel drop filter (CDF) based on photonic crystal nanobeam cavities. The conditions for implementing such an ideal CDF are derived from the temporal coupled-mode equations governing the operation of the CDF. By considering the intercoupling of the two involved nanobeam cavities, some ambiguities of the previous equivalent circuit model analysis are cleared up. Practical configurations on silicon-on-insulator (SOI) for the proposed CDF are suggested with a typical length less than 15 μm . Finite difference time domain (FDTD) method calculations show that the proposed filter can achieve drop efficiency higher than 99% without any reflection. Compared to the λ/4-shifted Bragg grating resonators based CDF, the proposed CDF is more compact, high-efficient and reflection-free. It is also easy to implement a low-power tunable filter due to the ultrahigh quality factor Q and ultrasmall modal volume V of the involved photonic crystal nanobeam cavities.
Received: 27 August 2012      Published: 29 March 2013
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.Gw (Other integrated-optical elements and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/034210       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/034210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Ping
HU Ting
QIU Chen
SHEN Ao
QIU Hui-Ye
WANG Fan
JIANG Xiao-Qing
WANG Ming-Hua
YANG Jian-Yi
[1] Fan S, Villeneuve P R and Joannopoulos J D 1998 Phys. Rev. Lett. 80 960
[2] Yu P and Ou H 2009 Chin. Phys. Lett. 26 107802
[3] Little B et al 1997 IEEE J. Lightwave Technol. 15 998
[4] Smit M and Van Dam C 1996 IEEE J. Sel. Top. Quantum Electron. 2 236
[5] Fan S, Villeneuve P, Joannopoulos J and Haus H 1998 Opt. Express 3 4
[6] Veerasubramanian V et al 2012 Opt. Express 20 15983
[7] Haus H and Lai Y 1992 IEEE J. Lightwave Technol. 10 57
[8] Damask J 1996 IEEE J. Lightwave Technol. 14 812
[9] Deotare P B et al 2009 Appl. Phys. Lett. 94 121106
[10] McCutcheon M W, Deotare P B, Zhang Y and Loncar M 2011 Appl. Phys. Lett. 98 111117
[11] Yu P et al 2011 Opt. Lett. 36 1314
[12] Desiatov B, Goykhman I and Levy U 2012 Appl. Phys. Lett. 100 041112
[13] Pernice W H P, Xiong C, Schuck C and Tang H X 2012 Appl. Phys. Lett. 100 091105
[14] Ryckman J D and Weiss S M 2012 Appl. Phys. Lett. 101 071104
[15] Sergent S et al 2012 Appl. Phys. Lett. 100 121103
[16] Haus H A 1984 Waves and Fields in Optoelectronics (New Jersey: Prentice-Hall) p 211
[17] Ren H et al 2006 Opt. Express 14 2446
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 034210
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 034210
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 034210
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 034210
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 034210
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 034210
[7] Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang, Liang-Liang Wang, Jia-Shun Zhang, Jian-Guang Li, Yuan-Da Wu, Yue Wang, Xiao-Jie Yin, Yong Li, Fei Zhong. The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection[J]. Chin. Phys. Lett., 2017, 34(10): 034210
[8] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 034210
[9] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Yu-De Yu. Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI[J]. Chin. Phys. Lett., 2017, 34(6): 034210
[10] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 034210
[11] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 034210
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 034210
[13] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 034210
[14] Fei Guo, Dan Lu, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji. Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates[J]. Chin. Phys. Lett., 2016, 33(02): 034210
[15] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 034210
Viewed
Full text


Abstract