Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 034102    DOI: 10.1088/0256-307X/30/3/034102
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Gain Equation of a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and/or an Axial Magnetic Field
Taghi Mohsenpour1*, Hassan Ehsani Amri2
1Department of Physics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran
2Department of Physics, Islamic Azad University, Nour Branch, Iran
Cite this article:   
Taghi Mohsenpour, Hassan Ehsani Amri 2013 Chin. Phys. Lett. 30 034102
Download: PDF(460KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electron motion in the combined ion-channel, helical wiggler and axial magnetic fields is analyzed in the absence of a radiation field. Detailed analysis of the gain equation in a free-electron laser is presented. Numerical calculations are made to illustrate the effects of the two electron-beam guiding devices on the gain when applied separately and simultaneously.
Received: 20 November 2012      Published: 29 March 2013
PACS:  41.60.Cr (Free-electron lasers)  
  52.20.Dq (Particle orbits)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/034102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/034102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Taghi Mohsenpour
Hassan Ehsani Amri
[1] Freund H P and Antonsen J M 1992 Principles of Free-Electron Lasers (London: Chapman and Hall)
[2] Friedland L 1980 Phys. Fluids 23 2376
[3] Diament P 1981 Phys. Rev. A 23 2537
[4] Freund H P and Drobot A T 1982 Phys. Fluids 25 736
[5] Freund H P and Ganguly A K 1985 IEEE J. Quantum Electron. 21 1073
[6] Takayama K and Hiramatsu S 1988 Phys. Rev. A 37 173
[7] Ozaki T 1992 Nucl. Instrum. Methods Phys. Res. Sect. A 318 101
[8] Jha P and Wurtele S 1993 Nucl. Instrum. Methods Phys. Res. Sect. A 331 477
[9] Esmaeilzadeh M, Mehdian H and Willett J E 2001 Phys. Rev. E 65 016501
[10] Jha P and Kumar P 1996 IEEE Trans. Plasma Sci. 24 1359
[11] Jha P and Kumar P 1998 Phys. Rev. E 57 2256
[12] Mirzanejhad S and Asri M 2005 Phys. Plasmas 12 093108
[13] Esmaeilzadeh M, Ebrahimi S, Saiahian A, Willett J E and Willett L J 2005 Phys. Plasmas 12 093103
[14] Mehdian H, Esmaeilzadeh M and Willett J E 2001 Phys. Plasmas 8 3776
[15] Esmaeilzadeh M, Mehdian H and Willett J E 2002 Phys. Plasmas 9 670
[16] Esmaeilzadeh M, Mehdian H and Willett J E 2004 J. Plasma Phys. 70 9
Related articles from Frontiers Journals
[1] Vijay Huse, Geetanjali Sharma, Swati Mishra, G. Mishra. Inclusion of Finite Permeability on Design and Optimization of an Electromagnetic Undulator[J]. Chin. Phys. Lett., 2014, 31(03): 034102
[2] Mona Gehlot, Geetanjali Sharma, G. Mishra, Hussain Jeevakhan, Sumit Tripathi. Magnetic Measurements of a Third Harmonic Table-Top Undulator for Free Electron Lasers[J]. Chin. Phys. Lett., 2013, 30(8): 034102
[3] DENG Hai-Xiao**, FENG Chao, LIU Bo, WANG Dong, WANG Xing-Tao, ZHANG Meng . Characterizing the Temporal Structure of a Relativistic Electron Bunch[J]. Chin. Phys. Lett., 2011, 28(12): 034102
[4] LIN Xu-Ling, ZHANG Jian-Bing, LU Yu, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min,. High Power THz Undulator Radiation from Linear Accelerator[J]. Chin. Phys. Lett., 2010, 27(4): 034102
[5] LIN Xu-Ling, ZHANG Jian-Bing, LU YU, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min,. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator[J]. Chin. Phys. Lett., 2009, 26(12): 034102
[6] HE Jun, WEI Yan-Yu, GONG Yu-Bin, WANG Wen-Xiang. Linear Analysis of Folded Double-Ridged Waveguide[J]. Chin. Phys. Lett., 2009, 26(11): 034102
[7] S. H. Kim. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission[J]. Chin. Phys. Lett., 2009, 26(5): 034102
[8] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 034102
[9] S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics[J]. Chin. Phys. Lett., 2006, 23(6): 034102
[10] WU Jian-Qiang. Dispersion Characteristics of a New Slow-Wave Structure[J]. Chin. Phys. Lett., 2004, 21(11): 034102
[11] ZHAO Qiang, XIE Jia-Lin, LI Yong-Gui, ZHUANG Jie-Jia. Optical Transition Radiation Measurement of Electron Beam for Beijing Free Electron Laser[J]. Chin. Phys. Lett., 2001, 18(4): 034102
[12] WU Jian-qiang, LIU Sheng-gang. Excitation of Slow Electromagnetic Waves in a Dielectric-Lined Waveguide Having a Thin Annular Plasma Sheet[J]. Chin. Phys. Lett., 1998, 15(5): 034102
[13] ZHU Xiong-wei. Ion Acoustic Wave Pumped Free Electron Laser[J]. Chin. Phys. Lett., 1997, 14(3): 034102
[14] HU Suxing, FU Ensheng. Compression Effect of Ultrashort Pulse in Far Infrared Waveguide Free Electron Laser[J]. Chin. Phys. Lett., 1995, 12(12): 034102
[15] Hesham Fares, Enrica Chiadroni. Unified Analysis for Calculating the Incoherent Spontaneous Emission of Cooperative Radiations[J]. Chin. Phys. Lett., 2017, 34(11): 034102
Viewed
Full text


Abstract