Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 030502    DOI: 10.1088/0256-307X/30/3/030502
GENERAL |
Changes in the Dynamics of a Rössler Oscillator by an External Forcing
Amanda C. Mathias, Paulo C. Rech**
Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil
Cite this article:   
Amanda C. Mathias, Paulo C. Rech 2013 Chin. Phys. Lett. 30 030502
Download: PDF(2405KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report some results indicating changes in the observed dynamics of the Rössler model under the influence of external sinusoidal forcing. By varying the control parameters of the external sinusoidal forcing, namely the amplitude and the angular frequency, we show, through numerical simulations which include parameter planes and Lyapunov exponents, that the external forcing can produce both chaos-order and order-chaos transitions. We also show that the sinusoidal forcing may generate hyperchaos.

Received: 24 September 2012      Published: 29 March 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/030502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/030502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Amanda C. Mathias
Paulo C. Rech

[1] Stone E F 1992 Phys. Lett. A 163 367

[2] Murali K and Lakshmanan M 1992 IEEE Trans. Circuits Syst. I 39 264

[3] Bondarenko V E 1997 Phys. Lett. A 236 513

[4] Parmananda P, Rivera M and Madrigal R 1999 Electrochim. Acta 44 4677

[5] Arai K, Yoshimura K and Mizutani S 2001 Phys. Rev. E 65 015202

[6] Pujol-Peré A, Calvo O, Matí as M A and Kurths J 2003 Chaos 13 319

[7] Parmananda P, Rivera M, Green B J and Hudson J L 2005 Appl. Math. Comput. 164 467

[8] Dana S K, Roy P K, Sethia G C, Sen A and Sengupta D C 2006 IEE Proc. Circuits Devices Syst. 153 453

[9] Mathias A C and Rech P C 2012 Chaos 22 043147

[10] Zhusubaliyev Z T, Laugesen J L and Mosekilde E 2010 Phys. Lett. A 374 2534

[11] Laugesen J L, Mosekilde E and Zhusubaliyev Z 2012 Physica D 241 488

[12] Sun K, Liu X, Zhu C and Sprott J C 2012 Nonlinear Dyn. 69 1383

[13] Rössler O E 1976 Phys. Lett. A 57 397

[14] Rech P C 2011 Neurocomputing 74 3361

[15] Correia M J and Rech P C 2012 Appl. Math. Comput. 218 6711

Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 030502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 030502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 030502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 030502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 030502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 030502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 030502
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 030502
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 030502
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 030502
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 030502
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 030502
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 030502
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 030502
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 030502
Viewed
Full text


Abstract