GENERAL |
|
|
|
|
A Method of Measuring the Axial Secular Motion Temperature of Trapping Large Size Ion Clouds |
YANG Yu-Na1,2,3**, LIU Hao1,2,3, HE Yue-Hong1,2,3, LI Hai-Xia1,2,3, CHEN Yi-He1,2, SHE Lei1,2, CHEN Liang2, LI Jiao-Mei1,2 |
1Key Laboratory of Atomic Frequency Standards (KLAFS), Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of the Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
YANG Yu-Na, LIU Hao, HE Yue-Hong et al 2013 Chin. Phys. Lett. 30 030501 |
|
|
Abstract A large cloud of 40Ca+ is successfully trapped and manipulated in a linear ion trap. The axial length of the ion cloud is measured under a series of end-cap voltages. We propose a method of measuring the axial secular motion temperature of the ion cloud by analyzing its image on an electron-multiplying CCD. The method is based on the Boltzmann equation that the axial density distribution of ions at secular motion temperature T satisfies. The axial secular motion temperature of the ion cloud is also obtained by measuring the Doppler broadened line width. For the same trapping parameters, the axial secular motion temperature by analyzing the image of ion cloud is 840 K and by fitting the experimental resonance line profile is 700 K.
|
|
Received: 10 October 2012
Published: 29 March 2013
|
|
PACS: |
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
37.10.Ty
|
(Ion trapping)
|
|
|
|
|
[1] Prestage J D, Tjoelker R L, Dick G J and Maleki L 1992 J. Mod. Opt. 39 221[2] Prestage J D, Chung S, Burt E, Maleki L and Tjoelker R L 2002 IEEE Int. Frequency Control Symposium PDA Exhibition p 459[3] Prestage J D, Chung S, Le T, Beach M, Maleki L and Tjoelker R L 2003 Proceedings of 35th Annual Precise Time and Time Interval (PTTI) Meeting (San Diego, California) p 472[4] Siemers I, Blatt R, Sauter Th and Neuhauser W 1988 Phys. Rev. A 38 5121[5] Prestage J D, Janik G R, Dick G J and Maleki L 1990 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 535[6] Dicke R H 1953 Phys. Rev. 89 472[7] Prestage J D, Dick G J and Maleki L 1989 J. Appl. Phys. 66 1013[8] Church D A and Dehmelt H G 1969 J. Appl. Phys. 40 3421[9] Ifflander R and Werth G 1977 Metrologia 13 167[10] Cutler L S, Giffard R P and Mcguire M D 1985 Appl. Phys. B 36 137[11] Cutler L S, Flory C A, Giffard R P and Mcguire M D 1986 Appl. Phys. B 39 251[12] Vedel F and Vedel M 1990 Int. J. Mass Spectrometry Ion Processes 99 125[13] Blatt R, Zoller P, Holzmuller G and Siemers I 1986 Z. Phys. D 4 121[14] Slivinsky V W, Ahlstrom H G, Tirsell K G, Larsen J, Glaros S, Zimmerman G and Shay H 1975 Phys. Rev. Lett. 35 1083[15] Nagourney W, Janik G and Dehmelt H 1983 Proc. Natl. Acad. Sci. U.S.A. 88 643[16] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203[17] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. B 19 113206[18] Donald C 2000 Ph. D. Dissertation (Oxford: Oxford University)[19] Prestage J D, Tjoelker R L and Maleki L 2000 IEEE/EIA Int. Frequency Control Symposium Exhibition p 706[20] Berkeland D J, Millere J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025[21] Dehmelt H G 1967 Adv. At. Mol. Phys. 3 53[22] Lunney M D N, Buchinger F and Moore R B 1992 J. Mod. Opt. 19 349 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|