Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 030501    DOI: 10.1088/0256-307X/30/3/030501
GENERAL |
A Method of Measuring the Axial Secular Motion Temperature of Trapping Large Size Ion Clouds
YANG Yu-Na1,2,3**, LIU Hao1,2,3, HE Yue-Hong1,2,3, LI Hai-Xia1,2,3, CHEN Yi-He1,2, SHE Lei1,2, CHEN Liang2, LI Jiao-Mei1,2
1Key Laboratory of Atomic Frequency Standards (KLAFS), Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
YANG Yu-Na, LIU Hao, HE Yue-Hong et al  2013 Chin. Phys. Lett. 30 030501
Download: PDF(612KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A large cloud of 40Ca+ is successfully trapped and manipulated in a linear ion trap. The axial length of the ion cloud is measured under a series of end-cap voltages. We propose a method of measuring the axial secular motion temperature of the ion cloud by analyzing its image on an electron-multiplying CCD. The method is based on the Boltzmann equation that the axial density distribution of ions at secular motion temperature T satisfies. The axial secular motion temperature of the ion cloud is also obtained by measuring the Doppler broadened line width. For the same trapping parameters, the axial secular motion temperature by analyzing the image of ion cloud is 840 K and by fitting the experimental resonance line profile is 700 K.

Received: 10 October 2012      Published: 29 March 2013
PACS:  05.70.Ce (Thermodynamic functions and equations of state)  
  32.70.Jz (Line shapes, widths, and shifts)  
  42.62.Fi (Laser spectroscopy)  
  37.10.Ty (Ion trapping)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/030501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yu-Na
LIU Hao
HE Yue-Hong
LI Hai-Xia
CHEN Yi-He
SHE Lei
CHEN Liang
LI Jiao-Mei

[1] Prestage J D, Tjoelker R L, Dick G J and Maleki L 1992 J. Mod. Opt. 39 221

[2] Prestage J D, Chung S, Burt E, Maleki L and Tjoelker R L 2002 IEEE Int. Frequency Control Symposium PDA Exhibition p 459

[3] Prestage J D, Chung S, Le T, Beach M, Maleki L and Tjoelker R L 2003 Proceedings of 35th Annual Precise Time and Time Interval (PTTI) Meeting (San Diego, California) p 472

[4] Siemers I, Blatt R, Sauter Th and Neuhauser W 1988 Phys. Rev. A 38 5121

[5] Prestage J D, Janik G R, Dick G J and Maleki L 1990 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 535

[6] Dicke R H 1953 Phys. Rev. 89 472

[7] Prestage J D, Dick G J and Maleki L 1989 J. Appl. Phys. 66 1013

[8] Church D A and Dehmelt H G 1969 J. Appl. Phys. 40 3421

[9] Ifflander R and Werth G 1977 Metrologia 13 167

[10] Cutler L S, Giffard R P and Mcguire M D 1985 Appl. Phys. B 36 137

[11] Cutler L S, Flory C A, Giffard R P and Mcguire M D 1986 Appl. Phys. B 39 251

[12] Vedel F and Vedel M 1990 Int. J. Mass Spectrometry Ion Processes 99 125

[13] Blatt R, Zoller P, Holzmuller G and Siemers I 1986 Z. Phys. D 4 121

[14] Slivinsky V W, Ahlstrom H G, Tirsell K G, Larsen J, Glaros S, Zimmerman G and Shay H 1975 Phys. Rev. Lett. 35 1083

[15] Nagourney W, Janik G and Dehmelt H 1983 Proc. Natl. Acad. Sci. U.S.A. 88 643

[16] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203

[17] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. B 19 113206

[18] Donald C 2000 Ph. D. Dissertation (Oxford: Oxford University)

[19] Prestage J D, Tjoelker R L and Maleki L 2000 IEEE/EIA Int. Frequency Control Symposium Exhibition p 706

[20] Berkeland D J, Millere J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025

[21] Dehmelt H G 1967 Adv. At. Mol. Phys. 3 53

[22] Lunney M D N, Buchinger F and Moore R B 1992 J. Mod. Opt. 19 349

Related articles from Frontiers Journals
[1] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 030501
[2] SONG Hua-Jie, LI Hua, HUANG Feng-Lei, ZHANG Shuo-Dao, HONG Tao. High-Fidelity Hugoniots of α Phase RDX Solid from High-Quality Force Field with Thermal, Zero-Point Vibration, and Anharmonic Effects[J]. Chin. Phys. Lett., 2015, 32(08): 030501
[3] FENG Shi-Quan, LI Jun-Yu, CHENG Xin-Lu. The Structural, Dielectric, Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX (X= S, Se, Te) from First-Principles Analysis[J]. Chin. Phys. Lett., 2015, 32(03): 030501
[4] HU Chuan-Sheng, SUN Xia, LUO Zhen-Lin, GAO Chen. Dynamic Multiscale Model for Dielectric Anomaly in PbTiO3-CoFe2O4 Epitaxial Nanocomposite Film[J]. Chin. Phys. Lett., 2014, 31(11): 030501
[5] SONG Hai-Feng, TIAN Ming-Feng, LIU Hai-Feng, SONG Hong-Zhou, ZHANG Gong-Mu. Theoretical Study on Equation of State of Porous Mo and Sn[J]. Chin. Phys. Lett., 2014, 31(1): 030501
[6] A. Belhaj, M. Chabab, H. El Moumni, L. Medari, M. B. Sedra. The Thermodynamical Behaviors of Kerr–Newman AdS Black Holes[J]. Chin. Phys. Lett., 2013, 30(9): 030501
[7] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 030501
[8] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 030501
[9] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[10] HU Jia-Wen, YU Yang-Xin. Prediction and Refinement of High-Order Virial Coefficients for a Hard-Sphere System[J]. Chin. Phys. Lett., 2009, 26(8): 030501
[11] TAN Shuai-Xia, LU Xiao-Ying, LI Wen, ZHAO Ning, ZHANG Xiao-Li, XU Jian. A Thermodynamic Analysis of the Validity of Wenzel and Cassie's Equations[J]. Chin. Phys. Lett., 2009, 26(8): 030501
[12] WANG Qing-Song, LAN Qiang, HU Jian-Bo, WU Jing, DAI Cheng-Da. Analytical Method to Evaluate Hugoniot of Metallic Materials with Different Initial Temperatures[J]. Chin. Phys. Lett., 2008, 25(12): 030501
[13] SU Qian-Min, , MA Yu-Gang, TIAN Wen-Dong, FANG De-Qing, CAI Xiang-Zhou, WANG Kun. Density and Symmetric Potential Dependences of Isoscaling Behaviour in the Lattice Gas Model[J]. Chin. Phys. Lett., 2008, 25(6): 030501
[14] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 030501
[15] Chen Qi-Feng, CAI Ling-Cang, JING Fu-Qian, CHEN Dong-Quan. Equation of State of the Fluid He--Ne Binary Mixtures at High Pressures and High Temperatures[J]. Chin. Phys. Lett., 2005, 22(8): 030501
Viewed
Full text


Abstract