Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 030303    DOI: 10.1088/0256-307X/30/3/030303
GENERAL |
Various Correlations in the Anisotropic Heisenberg XYZ Model with Dzyaloshinski–Moriya Interaction
TURSUN Mamtimin, ABLIZ Ahmad**, MAMTIMIN Rabigul, ABLIZ Ablimit, QIAO Pan-Pan
School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054
Cite this article:   
TURSUN Mamtimin, ABLIZ Ahmad, MAMTIMIN Rabigul et al  2013 Chin. Phys. Lett. 30 030303
Download: PDF(662KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Various thermal correlations as well as the effect of intrinsic decoherence on the correlations are studied in a two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya (DM) interaction along the z direction, i.e. Dz. It is found that tunable parameter Dz may play a constructive role on the concurrence C, classical correlation (CC) and quantum discord (QD) in thermal equilibrium while it plays a destructive role on the correlations in the intrinsic decoherence case. The entanglement and quantum discord exhibit collapse and revival under the phase decoherence. With a proper combination of the system parameters, the correlations can effectively be kept at high steady state values despite the intrinsic decoherence.

Received: 13 September 2012      Published: 29 March 2013
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Pq (Spin chain models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/030303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/030303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TURSUN Mamtimin
ABLIZ Ahmad
MAMTIMIN Rabigul
ABLIZ Ablimit
QIAO Pan-Pan

[1] Michael A N and Isaac L C 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University)

[2] Wootters W K 1998 Phys. Rev. Lett. 80 2245

[3] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901

[4] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404

Jin X L et al 2010 Phys. Rev. Lett. 104 100502

[5] Harold O and Woyciech H Z 2001 Phys. Rev. Lett. 88 017901

[6] Animesh D, Anil S and Carlton M C 2008 Phys. Rev. Lett. 100 050502

[7] Lanyon B P et al 2008 Phys. Rev. Lett. 101 200501

[8] Shun L L 2008 Phys. Rev. A 77 042303

[9] Sarandy M S 2009 Phys. Rev. A 80 022108

[10] Ali M et al 2010 Phys. Rev. A 81 042105

[11] Werlang T et al 2009 Phys. Rev. A 80 024103

[12] Fanchini F F et al 2010 Phys. Rev. A 81 052107

[13] Ren J, Wu Y Z and Zhu S Q 2012 Chin. Phys. Lett. 29 060305

[14] Shunlong L L and Shuang S F 2010 Phys. Rev. A 82 034302

[15] Ciliberti L, Rossignoli R and Canosa N 2010 Phys. Rev. A 82 042316

[16] Liu B Q, Bin S and Jian Z 2010 Phys. Rev. A 82 062119

[17] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305

[18] Asma A Q and Daniel F V J 2011 Phys. Rev. A 83 032101

[19] Preeti P and Swapan R 2011 Phys. Rev. A 83 032301

[20] Davide G and Gerardo A 2011 Phys. Rev. A 83 052108

[21] Raoul D 2008 Phys. Rev. B 78 224413

[22] Alireza S and Daniel A L 2009 Phys. Rev. Lett. 102 100402

[23] Matthias D L and Carlton M C 2010 Phys. Rev. Lett. 105 150501

[24] Borivoje D, Vlatko V and Caslav B 2010 Phys. Rev. Lett. 105 190502

[25] Kampermann H and Dagmar B 2011 Phys. Rev. Lett. 106 160401

[26] Qin M et al 2012 Chin. Phys. Lett. 29 030305

[27] Ji B Y et al 2010 J. Phys. B 43 165503

[28] Jin L G et al 2011 J. Phys. B 44 065504

[29] Lu X M et al 2010 Quantum Inf. Comput. 10 0994

[30] Maziero J et al 2009 Phys. Rev. A 80 044102

[31] Xu J S et al 2010 Nat. Commun. 1 93

[32] Maziero L et al 2010 Phys. Rev. A 81 022116

[33] Mazzola L et al 2010 Phys. Rev. Lett. 104 200401

[34] Wang B et al 2010 Phys. Rev. A 81 014101

[35] Ruggero V et al 2010 Phys. Rev. A 82 012313

[36] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101

[37] Chen Y X and Yin Z 2010 Commun. Theor. Phys. 54 02536102

[38] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

[39] Milburn G J 1991 Phys. Rev. A 44 5401

[40] Moya-Cessa H et al 1993 Phys. Rev. A 48 3900

Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 030303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030303
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 030303
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 030303
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 030303
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030303
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 030303
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 030303
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 030303
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 030303
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 030303
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 030303
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 030303
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 030303
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 030303
Viewed
Full text


Abstract