Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 030302    DOI: 10.1088/0256-307X/30/3/030302
GENERAL |
Realization of Optimal Universal and Phase-Covariant Quantum Machines via Input-Output Cavities
WANG Cong-Rong1, LI Da-Chuang1,2**, ZHANG Feng-Yuan1, XU Rui-Min1
1School of Electronics and Information Engineering, Hefei Normal University, Hefei 230601
2Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
WANG Cong-Rong, LI Da-Chuang, ZHANG Feng-Yuan et al  2013 Chin. Phys. Lett. 30 030302
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a scheme to realize a special quantum cloning machine via input-output cavities. The cloning machine can copy information from one atom to another distant atom. Choosing different parameters, the method can perform optimal symmetric (asymmetric) universal quantum cloning and optimal symmetric (asymmetric) phase-covariant cloning. Compared to previous schemes, our scheme is more insensitive to actual environmental noise and can get higher fidelity in a current cavity quantum electrodynamics system with an entangled state acting as a quantum channel than a single-photon pulse.

Received: 10 December 2012      Published: 29 March 2013
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/030302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Cong-Rong
LI Da-Chuang
ZHANG Feng-Yuan
XU Rui-Min

[1] Wootters W K et al 1982 Nature 299 802

[2] Dieks D 1982 Phys. Lett. A 92 271

[3] Bu?ek V and Hillery M 1996 Phys. Rev. A 54 1844

[4] Cerf N J 2000 Phys. Rev. Lett. 84 4497

Cerf N J 2000 J. Mod. Opt. 47 187

[5] Bruss D et al 2000 Phys. Rev. A 62 012302

[6] Karimipour V and Rezakhani A T 2002 Phys. Rev. A 66 052111

[7] Fan H, Matsumoto K and Wang X B et al 2001 Phys. Rev. A 65 012304

[8] Durt T and Du J 2004 Phys. Rev. A 69 062316

[9] Zhang W H, Wu T and Ye L et al 2007 Phys. Rev. A 75 044303

Zhang W H and Ye L 2007 New J. Phys. 7 1

Xiong W andYe L 2012 J. Opt. Soc. Am. B 29 901

[10] Zhao Z and Pan J W et al 2005 Phys. Rev. Lett. 95 030502

[11] Chen H W and Du J F et al 2007 Phys. Rev. A 75 012317

[12] Sabuncu M et al 2007 Phys. Rev. Lett. 98 170503

[13] Sabuncu M et al 2008 Phys. Rev. A 78 052312

[14] Soubusta J et al 2008 Phys. Rev. A 78 052323

[15] Lamas-Linares A et al 2002 Science 296 712

[16] Raimond J M et al 2001 Rev. Mod. Phys. 73 565

[17] Xia Y et al 2008 Appl. Phys. Lett. 92 021127

Xiong W and Ye L 2011 J. Opt. Soc. Am. B 28 2260

[18] Yu C S, Yi X X and Song H S et al 2007 Phys. Rev. A 75 044301

[19] Lin X M et al 2006 Phys. Rev. A 73 012323

[20] Xiao Y F et al 2004 Phys. Rev. A 70 042314

[21] Chen Q and Feng M 2009 Phys. Rev. A 79 064304

[22] Cirac J I, Zoller P and Kimble H J et al 1997 Phys. Rev. Lett. 78 3221

[23] Bennett C H et al 1996 Phys. Rev. Lett. 76 722

[24] Briegel H J, Dür W and Cirac J I et al 1998 Phys. Rev. Lett. 81 5932

[25] Chou C W et al 2007 Science 316 1316

[26] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902

[27] Maunz P et al 2005 Phys. Rev. Lett. 94 033002

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 030302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 030302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 030302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 030302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 030302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 030302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 030302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 030302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 030302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 030302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 030302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 030302
Viewed
Full text


Abstract