GENERAL |
|
|
|
|
New Variable Separation Solutions for Two Nonlinear Evolution Equations in Higher Dimensions |
XU Gui-Qiong1**, HUANG Xing-Zhong2 |
1Department of Information Management, College of Management, Shanghai University, Shanghai 200444
2Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444 |
|
Cite this article: |
XU Gui-Qiong, HUANG Xing-Zhong 2013 Chin. Phys. Lett. 30 030202 |
|
|
Abstract Based on the multi-linear variable separation approach, a new direct variable separation algorithm is proposed. The effectiveness of the algorithm is demonstrated by the applications of the (2+1)-dimensional modified Korteweg-de Vries equation and the (3+1)-dimensional BKP equation. The new variable separation solutions which include at least one arbitrary function are derived for these two equations with the aid of Maple.
|
|
Received: 08 August 2012
Published: 29 March 2013
|
|
|
|
|
|
[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University)[2] Rogers C and Shadwick W F 1982 Bäcklund Transformations and Their Applications (New York: Academic)[3] Matveev V A, Salle M A 1991 Darboux Transformations and Solitons (Berlin: Spinger)[4] Hirota R 1971 Phys. Rev. Lett. 27 1192[5] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522[6] Qu C Z, Zhang S L and Liu R C 2000 Physica D 144 97[7] Estevez P G, Qu C Z and Zhang S L 2002 J. Math. Anal. Appl. 275 44[8] Zhang S L, Lou S Y and Qu C Z 2005 Chin. Phys. Lett. 22 1029[9] Ji F Y and Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese)[10] Zhang S L, Lou S Y and Qu C Z 2003 J. Phys. A: Math. Gen. 36 12223[11] Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765[12] Cao C W 1990 Sci. Chin. A 33 528[13] Cheng Y and Li Y S 1991 Phys. Lett. A 157 22[14] Lou S Y and Chen L L 1999 J. Math. Phys. 40 6491[15] Lou S Y and Lu J Z 1996 J. Phys. A: Math. Gen. 29 4209[16] Hu H C and Lou S Y 2004 Chin. Phys. Lett. 21 2073[17] Shen S F 2006 Acta Phys. Sin. 55 1011 (in Chinese)[18] Dai C Q and Zhang J F 2006 J. Math. Phys. 47 043501[19] Radha R, Kumar C S, Lakshmanan M and Gilson C R 2009 J. Phys. A: Math. Theor. 42 102002[20] Chen W L, Zhang W T, Zhang L P and Dai C Q 2012 Chin. Phys. B 21 110507[21] Lou S Y 2000 Phys. Lett. A 277 94[22] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601[23] Lou S Y 2003 J. Phys. A: Math. Gen. 36 3877[24] Qian X M, Lou S Y and Hu X B 2004 J. Phys. A: Math. Gen. 37 2401[25] Zhang J F, Meng J P, Zheng C L and Huang W H 2004 Chaos Solitons Fractals 20 523[26] Liang Z F and Tang X Y 2010 Chin. Phys. Lett. 27 030201[27] Tang X Y and Lou S Y 2009 Front. Phys. China 2 235[28] Ying J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448[29] Tang X Y and Liang Z F 2006 Phys. Lett. A 351 398[30] Xu G Q and Li Z B 2003 Chin. Phys. Lett. 20 975[31] Xu G Q and Li Z B 2004 Comput. Phys. Commun. 161 65[32] Ferapontov E V 1999 Diff. Geom. Appl. 11 117[33] Zhang R and Shen S F 2007 Phys. Lett. A 370 471[34] Ma W X and Fan E G 2011 Comput. Math. Appl. 61 950[35] Ma W X and Zhu Z N 2012 Appl. Math. Comput. 218 11871 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|