Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 030202    DOI: 10.1088/0256-307X/30/3/030202
GENERAL |
New Variable Separation Solutions for Two Nonlinear Evolution Equations in Higher Dimensions
XU Gui-Qiong1**, HUANG Xing-Zhong2
1Department of Information Management, College of Management, Shanghai University, Shanghai 200444
2Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444
Cite this article:   
XU Gui-Qiong, HUANG Xing-Zhong 2013 Chin. Phys. Lett. 30 030202
Download: PDF(401KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the multi-linear variable separation approach, a new direct variable separation algorithm is proposed. The effectiveness of the algorithm is demonstrated by the applications of the (2+1)-dimensional modified Korteweg-de Vries equation and the (3+1)-dimensional BKP equation. The new variable separation solutions which include at least one arbitrary function are derived for these two equations with the aid of Maple.

Received: 08 August 2012      Published: 29 March 2013
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/030202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/030202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Gui-Qiong
HUANG Xing-Zhong

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University)

[2] Rogers C and Shadwick W F 1982 Bäcklund Transformations and Their Applications (New York: Academic)

[3] Matveev V A, Salle M A 1991 Darboux Transformations and Solitons (Berlin: Spinger)

[4] Hirota R 1971 Phys. Rev. Lett. 27 1192

[5] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522

[6] Qu C Z, Zhang S L and Liu R C 2000 Physica D 144 97

[7] Estevez P G, Qu C Z and Zhang S L 2002 J. Math. Anal. Appl. 275 44

[8] Zhang S L, Lou S Y and Qu C Z 2005 Chin. Phys. Lett. 22 1029

[9] Ji F Y and Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese)

[10] Zhang S L, Lou S Y and Qu C Z 2003 J. Phys. A: Math. Gen. 36 12223

[11] Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765

[12] Cao C W 1990 Sci. Chin. A 33 528

[13] Cheng Y and Li Y S 1991 Phys. Lett. A 157 22

[14] Lou S Y and Chen L L 1999 J. Math. Phys. 40 6491

[15] Lou S Y and Lu J Z 1996 J. Phys. A: Math. Gen. 29 4209

[16] Hu H C and Lou S Y 2004 Chin. Phys. Lett. 21 2073

[17] Shen S F 2006 Acta Phys. Sin. 55 1011 (in Chinese)

[18] Dai C Q and Zhang J F 2006 J. Math. Phys. 47 043501

[19] Radha R, Kumar C S, Lakshmanan M and Gilson C R 2009 J. Phys. A: Math. Theor. 42 102002

[20] Chen W L, Zhang W T, Zhang L P and Dai C Q 2012 Chin. Phys. B 21 110507

[21] Lou S Y 2000 Phys. Lett. A 277 94

[22] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601

[23] Lou S Y 2003 J. Phys. A: Math. Gen. 36 3877

[24] Qian X M, Lou S Y and Hu X B 2004 J. Phys. A: Math. Gen. 37 2401

[25] Zhang J F, Meng J P, Zheng C L and Huang W H 2004 Chaos Solitons Fractals 20 523

[26] Liang Z F and Tang X Y 2010 Chin. Phys. Lett. 27 030201

[27] Tang X Y and Lou S Y 2009 Front. Phys. China 2 235

[28] Ying J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448

[29] Tang X Y and Liang Z F 2006 Phys. Lett. A 351 398

[30] Xu G Q and Li Z B 2003 Chin. Phys. Lett. 20 975

[31] Xu G Q and Li Z B 2004 Comput. Phys. Commun. 161 65

[32] Ferapontov E V 1999 Diff. Geom. Appl. 11 117

[33] Zhang R and Shen S F 2007 Phys. Lett. A 370 471

[34] Ma W X and Fan E G 2011 Comput. Math. Appl. 61 950

[35] Ma W X and Zhu Z N 2012 Appl. Math. Comput. 218 11871

Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 030202
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 030202
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 030202
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 030202
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 030202
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 030202
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 030202
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 030202
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 030202
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 030202
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 030202
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 030202
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 030202
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 030202
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 030202
Viewed
Full text


Abstract