Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 030201    DOI: 10.1088/0256-307X/30/3/030201
GENERAL |
A New Multi-Symplectic Integration Method for the Nonlinear Schrödinger Equation
LV Zhong-Quan1,2, WANG Yu-Shun1,3, SONG Yong-Zhong1**
1Jiangsu Key Laboratory for NSLSCS School of Mathematical Science, Nanjing Normal University, Nanjing 210046
2College of Science, Nanjing Forestry University, Nanjing 210037
3Lasg, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
LV Zhong-Quan, WANG Yu-Shun, SONG Yong-Zhong 2013 Chin. Phys. Lett. 30 030201
Download: PDF(507KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a new multi-symplectic integration method for the nonlinear Schrödinger equation. The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with temporal discretization of a symplectic Euler scheme and it is semi-explicit in the sense that it does not need to solve the nonlinear algebraic equations at every time step. We verify that the multi-symplectic semi-discretization of the Schrödinger equation with periodic boundary conditions has N semi-discrete multi-symplectic conservation laws. The discretization in time of the semi-discretization leads to N full-discrete multi-symplectic conservation laws. Numerical results are presented to demonstrate the robustness and the stability.

Received: 13 September 2012      Published: 29 March 2013
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/030201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Zhong-Quan
WANG Yu-Shun
SONG Yong-Zhong

[1] Asher U M and Mclachlan R I 2004 Appl. Numer. Math. 48 255

[2] Asher U M and Mclachlan R I 2005 J. Sci. Comput. 25 83

[3] Bridges T J 1997 Math. Proc. Cambridge Philos. Soc. 121 147

[4] Bridges T J and Reich S 2001 Phys. Lett. A 284 184

[5] Bridges T J and Reich S 2001 Physica D 152 491

[6] Chen J B and Qin M Z 2001 Electron. Trans. Numer. Anal. 12 193

[7] Chen J B et al 2002 Comput. Math. Appl. 43 1095

[8] Cai J X et al 2009 J. Math. Phys. 50 033510

[9] Cohen D et al 2008 J. Comput. Phys. 227 5492

[10] Feng K and Qin M Z 2010 Symplectic Geometric Algorithms for Hamiltonian systems (Hangzhou: Splinger) (in Chinese)

[11] Hong J L et al 2006 Appl. Numer. Math. 56 814

[12] Hong J L et al 2007 J. Comput. Phys. 226 1968

[13] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613

[14] Islas A L et al 2001 J. Comput. Phys. 173 116

[15] Islas A L and Schober C M 2004 J. Comput. Phys. 197 585

[16] Kong L H et al 2006 Chin. J. Comput. Phys. 23 25

[17] Lv Z Q et al 2011 Chin. Phys. Lett. 28 060205

[18] Moore B and Reich S 2003 Numer. Math. 95 625

[19] Qin M Z and Wang Y S 2011 Structure-Preserving Algorithm for PDEs (Hangzhou: Zhejiang Press for Science and Technology) (in Chinese)

[20] Reich S 2000 J. Comput. Phys. 157 473

[21] Wang J 2009 Comput. Phys. Commun. 180 1063

[22] Wang Y S et al 2007 Chin. Phys. Lett. 24 312

[23] Zhao P F and Qin M Z 2000 J. Phys. A: Math. Gen. 33 3613

[24] Zhu H J et al 2011 Adv. Appl. Math. Mech. 3 663

Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 030201
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 030201
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 030201
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 030201
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 030201
[6] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 030201
[7] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 030201
[8] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 030201
[9] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 030201
[10] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 030201
[11] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 030201
[12] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 030201
[13] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 030201
[14] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 030201
[15] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 030201
Viewed
Full text


Abstract