Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 028503    DOI: 10.1088/0256-307X/30/2/028503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
An Ultrathin AlGaN Barrier Layer MIS-HEMT Structure for Enhancement-Mode Operation
QUAN Si1, MA Xiao-Hua2, ZHENG Xue-Feng3, HAO Yue3**
1School of Electronics and Control Engineering, Chang'an University, Xi'an 710064
2School of Technical Physics, Xidian University, Xi'an 710071
3Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071
Cite this article:   
QUAN Si, MA Xiao-Hua, ZHENG Xue-Feng et al  2013 Chin. Phys. Lett. 30 028503
Download: PDF(662KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A GaN-based enhancement-mode (E-Mode) metal-insulator-semiconductor (MIS) high electron mobility transistor (HEMT) with a 2 nm/5 nm/1.5nm-thin GaN/AlGaN/AlN barrier is presented. We find that the formation of a two-dimensional electron gas (2DES) in the GaN/AlGaN/AlN/GaN heterostructure can be controlled by the presence of the plasma-enhanced chemical-vapor deposition (PECVD) Si3N4 on the barrier layer, and the degree of decrease in sheet resistance Rsh is dependent on the Si3N4 thickness. We choose 13 nm Si3N4 as the gate insulator to decrease gate current and to improve the threshold voltage of devices. With selective etching of the passivation Si3N4 under gate and over fluorine plasma treatment, the MIS-HEMT exhibits a high threshold voltage of 1.8 V. The maximum drain current Id,max and the maximum transconductance are 810 mA/mm and 190 mS/mm, respectively. The devices show a wide operation range of 4.5 V.
Received: 17 August 2012      Published: 02 March 2013
PACS:  85.30.Tv (Field effect devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.55.+f  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/028503       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/028503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QUAN Si
MA Xiao-Hua
ZHENG Xue-Feng
HAO Yue
[1] Saito W, TakadaY, Kuraguchi M, Tsuda K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron Devices 50 2528
[2] Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502
[3] Wu Y, Jacob-Mitos M, Moore M and Heikman S 2008 IEEE Electron Device Lett. 29 824
[4] Kuraguchi M, Takada Y, Suzuki T, Hirose M, Tsuda K, Saito W Saito Y and Omura I 2007 Phys. Status Solidi A 204 2010
[5] Maroldt S Haupt C, Pletschen W, Muller S, Quay R Ambacher O Schippel C and Schwierz F 2009 Jpn. J. Appl. Phys. 48 04C083C 083
[6] Cai Y, Zhou G Y, Chen J K and Lau M K 2005 IEEE Electron Device Lett. 26 435
[7] Cai Y, Zhou Y, Lau M K and Chen J K 2006 IEEE Trans. Electron Devices 53 2207
[8] Palacios T, Suh S C, Chakraborty A, Keller S, DenBaars P S and Mishra K U 2006 IEEE Electron Device Lett. 27 428
[9] Basu A and Adesida I 2009 J. Appl. Phys. 105 033 705
[10] Chang T C, Hsu H T, Chang Y E, Chen C Y, Trinh D H and Chen J K 2010 IEEE Electron. Lett. 46 309
[11] Im S K, Ha B J, Kim W K, Lee S J, Kim S D, Hahm H S and Lee H J 2010 IEEE Electron Device Lett. 31 192
[12] Lu B, Saadat I O and Palacios T 2010 IEEE Electron Device Lett. 31 990
[13] Imada T, Kanamura M and Kikkawa T The 2010 IEEE Int. Power Electron. Conf. 1027
[14] Higashiwaki M, Mimura T, Matsui T 2007 IEEE Trans. Electron Devices 54 1566
[15] Anderson J T, Tadje J M, Mastro A M, Hite K J, Hobart D K, Eddy R C and Kub J F 2013 IEEE Electron Device Lett. (in press)
[16] Ohmaki Y, Tanimoto M, Akamatsu S and Mukai T 2006 Jpn. J. Appl. Phys. 45 1168
[17] Wang H R, Saunier P, Xing X, Lian X C, Gao X, Guo S, Snider G, Fay P, Jena D and Xing L H 2010 IEEE Electron Device Lett. 31 1383
[18] Wang H R, Saunier P, Tang Y, Fang T, Gao X, Guo S, Snider G, Fay P, Jena D and Xing L H 2011 IEEE Electron Device Lett. 32 309
[19] Higashiwaki M, Hirose N and Matsui T 2005 IEEE Electron Device Lett. 26 139
[20] Higashiwaki M, Onojima N, Matsui T and Mimura T 2006 J. Appl. Phys. 100 033714
[21] Onojima N, Higashiwaki M, Suda J, Kimoto T, Mimura T and Matsui T 2007 J. Appl. Phys. 101 043703
[22] Ma X H, Quan S, Cao M Y, Yang L Y Ma J G, Zhang J C and Hao Y 2011 International Conference on Nirtride Semiconducters (ICNS-9) (IEEE Conference, Glasgo, UK)
[23] Eickelkamp M, Fahle D and Lindner J 2010 Phys. Status Solidi A 207 1342
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 028503
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 028503
[3] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 028503
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 028503
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 028503
[6] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 028503
[7] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 028503
[8] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 028503
[9] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 028503
[10] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 028503
[11] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 028503
[12] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 028503
[13] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 028503
[14] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 028503
[15] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 028503
Viewed
Full text


Abstract