Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 028401    DOI: 10.1088/0256-307X/30/2/028401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Sparse Transform Matrices and Their Application in the Calculation of Electromagnetic Scattering Problems
CAO Xin-Yuan1, CHEN Ming-Sheng2**, WU Xian-Liang2
1School of Electronics and Information Engineering, Anhui University, Hefei 230039
2School of Electronics and Information Engineering, Hefei Normal University, Hefei 230601
Cite this article:   
CAO Xin-Yuan, CHEN Ming-Sheng, WU Xian-Liang 2013 Chin. Phys. Lett. 30 028401
Download: PDF(524KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract When compressed sensing is introduced into the moment method, a 3D electromagnetic scattering problem over a wide angle can be solved rapidly, and the selection of sparse basis has a direct influence on the performance of this algorithm, especially the number of measurements. We set up five sparse transform matrices by discretization of five types of classical orthogonal polynomials, i.e., Legendre, Chebyshev, the second kind of Chebyshev, Laguerre, and Hermite polynomials. Performances of the algorithm using these matrices are compared via numerical experiments, and the results show that some of them obviously work excellently and can accelerate wide angle scattering analysis greatly.
Received: 07 November 2012      Published: 02 March 2013
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/028401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/028401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Xin-Yuan
CHEN Ming-Sheng
WU Xian-Liang
[1] See K Y, Chua E K and Liu Z 2009 Prog. Electromagn. Res. 94 367
[2] Li J Y, Li L W and Gan Y B 2005 J. Electromagnet. Wave. 19 1729
[3] Chen M S, Wu X L, Sha W and Huang Z X 2008 Chin. Phys. Lett. 25 1000
[4] Zhang J D, Zhu D Y and Zhang G 2012 IEEE Trans. Signal Process. 60 1718
[5] Yu G S and Sapiro G 2011 IEEE Trans. Signal Process. 59 5842
[6] Hussain Z, Taylor J S, Hardoon D R and Dhanjal C 2011 IEEE Trans. Inf. Theory 57 5326
[7] Needell D and Vershynin R 2010 IEEE J. Sel. Top. Signal Process. 4 310
[8] Vipiana F, Pirinoli P and Vecchi G 2007 IEEE Trans. Antennas Propag. 55 3229
[9] Wang R, Guo L X, Ma J and Wu Z S 2009 Chin. Phys. B 18 1503
[10] Cao X Y, Chen M S and Wu X L 2012 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT) (Shenzhen, China 5–8 May 2012) 2 1
[11] Lefebvre J E, Zhang V, Gazalet J and Gryba T 1999 J. Appl. Phys. 85 3419
[12] Di L et al 2002 IEEE Trans. Electron Devices 49 1172
[13] Chi C 1966 IEEE Trans. Autom. Control 11 144
[14] Zhou D et al 2010 IEEE Trans. Antennas Propag. 58 2785
[15] Igor R 2005 Proc. Am. Math. Soc. 133 1299
[16] Nicholson B D, Rabinowitz P, Richter N and Zeilberger D 1971 Math. Comput. 25 79
[17] Nagao T and Slevin K 1993 J. Math. Phys. 34 2075
[18] Chung Y S et al 2004 IEEE Trans. Antennas Propag. 52 2319
[19] Withers C and Nadarajah S 2006 Electron. Lett. 42 1368
[20] Olivier P D 1991 Electron. Lett. 27 352
Related articles from Frontiers Journals
[1] Xiao-Yu Liu, Yong Zhang, De-Jiao Xia, Tian-Hao Ren, Jing-Tao Zhou, Dong Guo, Zhi Jin. A High-Sensitivity Terahertz Detector Based on a Low-Barrier Schottky Diode[J]. Chin. Phys. Lett., 2017, 34(7): 028401
[2] Tian-Hao Ren, Yong Zhang, Bo Yan, Rui-Min Xu, Cheng-Yue Yang, Jing-Tao Zhou, Zhi Jin. A High Performance Terahertz Waveguide Detector Based on a Low-Barrier Diode[J]. Chin. Phys. Lett., 2016, 33(06): 028401
[3] Meng Kong, Ming-Sheng Chen, Liang Zhang, Xin-Yuan Cao, Xian-Liang Wu. Efficient Solution to Electromagnetic Scattering Problems of Bodies of Revolution by Compressive Sensing[J]. Chin. Phys. Lett., 2016, 33(01): 028401
[4] REN Tian-Hao, ZHANG Yong, YAN Bo, XU Rui-Min, YANG Cheng-Yue, ZHOU Jing-Tao, JIN Zhi. A 330–500 GHz Zero-Biased Broadband Tripler Based on Terahertz Monolithic Integrated Circuits[J]. Chin. Phys. Lett., 2015, 32(02): 028401
[5] CAO Xin-Yuan, CHEN Ming-Sheng, KONG Meng, ZHANG Liang, WU Xian-Liang. Method of Moments Based on Prior Knowledge for Solving Wide Angle EM Scattering Problems[J]. Chin. Phys. Lett., 2014, 31(11): 028401
[6] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 028401
[7] LI Ru-Guan, JIANG Shu-Wen, GAO Li-Bin, LI Yan-Rong. A Distributed Phase Shifter Using Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 Thin Films[J]. Chin. Phys. Lett., 2013, 30(7): 028401
[8] GAO Xiang, LI Chao, FANG Guang-You . The Realization of Terahertz Image Reconstruction with High Resolution Based on the Amplitude of the Echoed Wave by using the Phase Retrieval Algorithm[J]. Chin. Phys. Lett., 2013, 30(6): 028401
[9] XING Qing-Zi, DU Lei, ZHENG Shu-Xin, GUAN Xia-Ling, LI Jian, CAI Jin-Chi, GONG Cun-Kui, WANG Xue-Wu, TANG Chuan-Xiang, James Billen, James Stovall, Lloyd Young. Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source[J]. Chin. Phys. Lett., 2013, 30(5): 028401
[10] ZHANG Jun-Feng, LI De-Ren, CHEN Zheng, LU Zhi-Chao, ZHOU Shao-Xiong. Noise Suppression Effect of Composites Containing Glass-Covered Amorphous CoFeSiBCr Wires[J]. Chin. Phys. Lett., 2012, 29(6): 028401
[11] YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song . Partially Loaded Cavity Analysis by Using the 2-D FDTD Method[J]. Chin. Phys. Lett., 2011, 28(11): 028401
[12] LIU Zong-Kai, ZHOU Ben-Mou**, LIU Hui-Xing, LIU Zhi-Gang, JI Yan-Liang . Direct Force Control of a Rudder with the Action of a Coplanar Waveguide Product Microwave[J]. Chin. Phys. Lett., 2011, 28(9): 028401
[13] ZHANG Yu, ZHANG Xin-Liang, CHEN Guo-Jie, XU En-Ming, HUANG De-Xiu. A Microwave Photonic Notch Filter Using a Microfiber Ring Resonator[J]. Chin. Phys. Lett., 2010, 27(7): 028401
[14] XU Wei, XIN Xiang-Jun, ZHAO Tong-Gang, LING Jing, YU Chong-Xiu. Generation of Carrier and Odd Sidebands Suppressed Optical MM-Wave with Signal Only on One Sideband Using an External Integrated Mach-Zehnder Modulator[J]. Chin. Phys. Lett., 2009, 26(12): 028401
[15] WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 028401
Viewed
Full text


Abstract