Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 027501    DOI: 10.1088/0256-307X/30/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Hysteretic Behavior of Angular Dependence of Exchange Bias in NiFe/granular-FeMn-MgO Bilayers
HU Hai-Ning1**, QIU Xue-Peng2, SHI Zhong3
1School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090
2Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai 200433
3School of Physics Science and Engineering, Tongji University, Shanghai 200092
Cite this article:   
HU Hai-Ning, QIU Xue-Peng, SHI Zhong 2013 Chin. Phys. Lett. 30 027501
Download: PDF(774KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the hysteretic behavior of the angular dependence of exchange bias for a series of polycrystalline NiFe/(FeMn)1?x(MgO)x bilayers with varying x. For x=0.025, the antiferromagnetic layer is of the largest degree of the fcc (111) preferred texture. At the same x, both the exchange field and blocking temperature acquire maximal values. In particular, the hysteretic behavior of the angular dependence between clockwise and counter-clockwise rotations shows minimal angular shift. These results can be explained in terms of the thermal activation model.
Received: 26 September 2012      Published: 02 March 2013
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.30.Gw (Magnetic anisotropy)  
  75.60.Jk (Magnetization reversal mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/027501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Hai-Ning
QIU Xue-Peng
SHI Zhong
[1] Meiklejohn W H and Bean C P 1956 Phys. Rev. B 102 1413
[2] Nogues J and Schuler I K 1999 J. Magn. Magn. Mater. 192 203
[3] Berkowitz A E and Takano K 1999 J. Magn. Magn. Mater. 200 552
[4] Miltényi P, Gierlings M, Keller J, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2000 Phys. Rev. Lett. 84 4224
[5] Morel R, Portemont C, Brenac A and Notin L 2006 Phys. Rev. Lett. 97 127203
[6] Fecioru-Morariu M, Rizwan Ali S, Papusoi C, Sperlich M and Güntherodt G 2007 Phys. Rev. Lett. 99 97206
[7] Nowak U, Usadel K D, Keller J, Miltényi P, Beschoten B and Güntherodt G 2002 Phys. Rev. B 66 014430
[8] Ambrose T, Sommer R L and Chien C L 1997 Phys. Rev. B 56 83
[9] Gao T R, Yang D Z, Zhou S M, Chantell R, Asselin P, Bai X J, Du J and Wu X S 2007 Phys. Rev. Lett. 99 057201
[10] Shi Z, Gao T R, Zhou S M, Chantrell R, Asselin P, Bai X J, Du J and Wu X S 2008 J. Appl. Phys. 103 07E926
[11] Hu H N, Qiu X P, Shi Z, Zhou S M Bai X J, Du J and Sun L 2008 Appl. Phys. Lett. 93 122503
[12] Hong J, Leo T, Smith D J and Berkowitz A E 2006 Phys. Rev. Lett. 96 117204
[13] Choe G and Gupta S 1997 Appl. Phys. Lett. 70 1766
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 027501
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 027501
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 027501
[4] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 027501
[5] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 027501
[6] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 027501
[7] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 027501
[8] Li-Yu HAO, Tie Yang, Ming Tan. Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound[J]. Chin. Phys. Lett., 2020, 37(1): 027501
[9] Li-Yu HAO, Tie YANG, Xiao-Tian WANG, Ming TAN. Negative Thermal Expansion of the Dy$_{2}$Fe$_{16}$Cr Compound[J]. Chin. Phys. Lett., 2019, 36(6): 027501
[10] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 027501
[11] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 027501
[12] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 027501
[13] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 027501
[14] R. Masrour, M. Hamedoun, A. Benyoussef , E. K. Hlil, O. Mounkachi, H. El Moussaoui. Calculation of Exchange Constants in Spinels Chromites ZnxCo1−xCr2O4[J]. Chin. Phys. Lett., 2014, 31(03): 027501
[15] LI Shu-Fa, HE Pan, CHENG Chu-Yuan, ZHOU Shi-Ming, LAI Tian-Shu. Spin-Wave Modes in Exchange-Coupled FePt/FeNi Bilayer Films[J]. Chin. Phys. Lett., 2014, 31(1): 027501
Viewed
Full text


Abstract