Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 027401    DOI: 10.1088/0256-307X/30/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Predicted fcc Superconducting Phase for Compressed Se and Te
ZHOU Da-Wei1**, PU Chun-Ying1, Szczęániak Dominik2,3, ZHANG Guo-Fang1, LU Cheng1, LI Gen-Quan1, SONG Jin-Fan1
1College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061
2Institute of Physics, Jan Dlugosz University in Cz?stochowa, Al. Armii Krajowej 13/15, Cz?stochowa 42200, Poland
3Institute for Molecules and Materials UMR 6283, University of Maine, Ave. Olivier Messiaen, Le Mans 72085, France
Cite this article:   
ZHOU Da-Wei, PU Chun-Ying, Szcz?ániak Dominik et al  2013 Chin. Phys. Lett. 30 027401
Download: PDF(774KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the framework of the ab initio random structure search method, we show that elemental Se and Te undergo pressure-induced structural transition from the bcc to fcc phase, in agreement with the theoretical results previously reported. By means of the pseudopotential plane-wave method based on density functional perturbation theory, the fcc structure for both elements is found to be another phonon-mediated superconducting phase of these materials. With a reasonable value for the Coulomb pseudopotential μ?=0.12, the maximum superconducting transition temperature Tc in the fcc phase of Se and Te is estimated to be about 5.7 K and 4.6 K, respectively. Furthermore, we show that in the entire fcc phase for Se and Te, the superconducting transition temperature decreases together with the increase in pressure, leading to the final suppression of the superconductivity. It is suggested that such behavior is mainly caused by the rapid increase in the mean-square phonon frequency 2? with pressure. Finally, a very strong electron-phonon coupling value, for both Se and Te in the fcc phase, is found along the GK high symmetry lines.
Received: 08 November 2012      Published: 02 March 2013
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/027401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Da-Wei
PU Chun-Ying
Szcz?ániak Dominik
ZHANG Guo-Fang
LU Cheng
LI Gen-Quan
SONG Jin-Fan
[1] Akahama Y et al 1993 Phys. Rev. B 48 6862
[2] Luo H et al 1993 Phys. Rev. Lett. 71 2943
[3] Zakharov O and Cohen M L 1995 Phys. Rev. B 52 12572
[4] Akahama Y et al 1993 Phys. Rev. B 47 20
[5] Aoki K et al 1980 J. Phys. Soc. Jpn. 48 551
[6] Parthasarathy G and Holzapfel W B 1988 Phys. Rev. B 38 10105
[7] Vulliet P and Sanchez J P 1998 Phys. Rev. B 58 171
[8] McMahon M I et al 2004 Phys. Rev. B 70 054101
[9] Degtyareva O et al 2007 Phys. Rev. Lett. 99 155505
[10] Hejny C et al 2005 Phys. Rev. B 71 020101
[11] Loa I et al 2009 Phys. Rev. Lett. 102 035501
[12] Yu P et al 2009 Appl. Phys. Lett. 94 011910
[13] Pla?ienka D and Martoň ák R 2012 Phys. Rev. B 85 094112
[14] Sanloup C et al 2008 Phys. Rev. Lett. 100 075701
[15] Kirchhoff F et al 1994 Phys. Rev. B 50 9063
[16] Akola J et al 2010 Phys. Rev. B 81 094202
[17] Ohmura S and Shimojo F 2011 Phys. Rev. B 83 134206
[18] Funamori N and Tsuji K 2001 Phys. Rev. B 65 014105
[19] Bichara C et al 1996 Phys. Rev. B 53 206
[20] Bundy F P and Dunn K J 1980 Phys. Rev. B 22 3157
[21] Akahama Y et al 1992 Solid State Commun. 84 803
[22] Struzhkin V V et al 1997 Nature 390 382
[23] Gregoryanz E et al 2002 Phys. Rev. B 65 064504
[24] Szczesniak R and Szczesniak D 2012 Phys. Status Solidi B 249 2194
[25] Szczesniak R and Durajski A P 2012 Solid State Commun. 152 1018
[26] Rudin S P and Liu A Y 1999 Phys. Rev. Lett. 83 3049
[27] Otani M and Suzuki N 2001 Phys. Rev. B 63 104516
[28] Mauri F et al 1996 Phys. Rev. Lett. 77 1151
[29] Rudin S P et al 2001 Phys. Rev. B 63 224107
[30] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Bl?chl P E 1994 Phys. Rev. B 50 17953
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[35] Giannozzi P et al 2009 J. Phys.: Condens. Matter 21 395502
[36] Troullier N and Martins J L 1991 Phys. Rev. B 43 8861
[37] Suzuki N and Otani M 2007 J. Phys.: Condens. Matter 19 125206
[38] Geshi M et al 1998 J. Phys. Soc. Jpn. 67 3141
[39] Buzea C and Robbie K 2005 Supercond. Sci. Technol. 18 R1
[40] Tian F B et al 2008 Phys. Rev. B 78 235431
[41] Jin X L et al 2010 Proc. Natl. Acad. Sci. U.S.A. 107 9969
[42] Li Y W et al 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708
[43] Duan D F et al 2009 Phys. Rev. B 79 064518
[44] Duan D F et al 2009 J. Phys.: Condens. Matter 22 015702
[45] Gao G Y et al 2008 Phys. Rev. Lett. 101 107002
[46] Zhao J et al 2010 Chin. Phys. Lett. 27 066101
[47] Liu Z X et al 2002 Chin. Phys. Lett. 19 120
[48] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[49] McMillan W L 1968 Phys. Rev. 167 331
[50] Hopfield J J 1969 Phys. Rev. 186 443
Related articles from Frontiers Journals
[1] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 027401
[2] Xu Chen, Xinhui Zhan, Xiaojun Wang, Jun Deng, Xiao-Bing Liu, Xin Chen, Jian-Gang Guo, and Xiaolong Chen. Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure[J]. Chin. Phys. Lett., 2021, 38(5): 027401
[3] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 027401
[4] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 027401
[5] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 027401
[6] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 027401
[7] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$[J]. Chin. Phys. Lett., 2020, 37(6): 027401
[8] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$ *[J]. Chin. Phys. Lett., 0, (): 027401
[9] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 027401
[10] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 027401
[11] Yiyuan Mao, Jun Li, Yulong Huan, Jie Yuan, Zi-an Li, Ke Chai, Mingwei Ma, Shunli Ni, Jinpeng Tian, Shaobo Liu, Huaxue Zhou, Fang Zhou, Jianqi Li, Guangming Zhang, Kui Jin, Xiaoli Dong, Zhongxian Zhao. Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System[J]. Chin. Phys. Lett., 2018, 35(5): 027401
[12] ZHAO Juan, FENG Wan-Xiang, LIU Zhi-Ming, MA Yan-Ming, HE Zhi, CUI Tian, ZOU Guang-Tian. Structural Investigation of Solid Methane at High Pressure[J]. Chin. Phys. Lett., 2010, 27(6): 027401
[13] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 027401
[14] LIU Zhi-Yong, YANG Hai-Peng, LU Xi-Feng, ZHOU Fang, WEN Hai-Hu. Low Temperature Specific Heat of the Underdoped La2-xSrxCuO4 Single Crystals[J]. Chin. Phys. Lett., 2004, 21(2): 027401
[15] SONG Bo, , WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model[J]. Chin. Phys. Lett., 2003, 20(2): 027401
Viewed
Full text


Abstract