CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Research with KNbO3 Bulk and Surface Properties Based on Density Functional Theory |
SUN Hong-Guo1**, ZHOU Zhong-Xiang2, YUAN Cheng-Xun2, YANG Xiao-Niu1 |
1Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 2Department of Physics, Harbin Institute of Technology, Harbin 150001
|
|
Cite this article: |
SUN Hong-Guo, ZHOU Zhong-Xiang, YUAN Cheng-Xun et al 2013 Chin. Phys. Lett. 30 027302 |
|
|
Abstract The geometrical structure optimization, band structure, density of states, and charge density contour of potassium niobate (KNbO3) in the bulk [100] direction and (100) surface are calculated and analyzed using density functional theory. The elastic constants, which can describe the bonding characteristics and structural stability, are also computed, and the dielectric function, which can be used to calculate all the other optical properties of the material, is evaluated. Local density approximation functional analysis using CASTEP software is also employed. Several similarities and differences are observed in the properties of the KNbO3 bulk and surface. Almost all of the calculated results for the bulk sample are twice those of the surface sample. The results are consistent with the experiment.
|
|
Received: 22 September 2012
Published: 02 March 2013
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
77.84.Ek
|
(Niobates and tantalates)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
|
|
|
[1] Biaggio I, Zgonik m and Gunter P J 1992 J. Opt. Soc. Am. B 9 1480 [2] Zysset B, Biaggio I and Gunter P 1992 J. Opt. Soc. Am. B 9 380 [3] Nakamura K, Tokiwa and Kawamura Y 2002 J. Appl. Phys. 91 9272 [4] Li D F, Guo Z C, Li B L, Dong H N and Xiao H Y 2011 Chin. Phys. Lett. 28 086802 [5] Gopalan V and Raj R 1995 J. Am. Ceram. Soc. 78 1825 [6] Yamanouchi K, Odagawa H, Kojima T and Matsumura T 1997 Electron. Lett. 33 193 [7] Zaldo C, Gill D S and Eason R W 1994 Appl. Phys. Lett. 65 502 [8] Zhao N, Wang Y H, Zhao X Y, Zhang M and Gong S 2011 Chin. Phys. Lett. 28 077101 [9] Chow A F, Lichtenwalner D J, Woolcott R R, Graettinger T M, Auciello O, kingon A I, Boatner L A and Parikh N R 1994 Appl. Phys. Lett. 65 1073 [10] Jin D, Rehman A, Qain H Q, Jiang L Z, Zhang H J, Li H Y, He P M and Bao S N 2011 Chin. Phys. Lett. 28 116804 [11] Beckers L, Schubert J, Zander W, Ziesmann J, Eckau A, Leinenbach P and Buchal C 1998 J. Appl. Phys. 83 3305 [12] Gong S, Wang Y H, Zhao X Y, Zhang M, Zhao N and Duan Y F 2011 Chin. Phys. Lett. 28 087402 [13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys: Condens. Matter 14 2717 [14] Bai Y L, Zhou X L, Chen X R and Gou Q Q 2003 Chin. Phys. Lett. 20 2019 [15] Wei H Y, Xiong X L, Song H T and Luo S Z 2010 Chin. Phys. Lett. 27 097102 [16] Jia Y, Ma B X, Shen S G, Yang S E 1999 Acta Phys. Sin. (Overseas Ed.) 8 46 [17] Sun H G, Zhou Z X, Shen Y Q and Yuan C X 2010 Compd. Mater. Sci. 50 338 [18] Labidi S, Labidi M, Meradji H, Ghemid S and Hassan F E 2010 Acta Phys. Sin. 48 126 (in Chinese) [19] Didomenico M and Wemple S H 1969 J. Appl. Phys. 40 720 [20] Jellison G E, Paulauskas I, Boatner L A and Singh D J 2006 Phys. Rev. B 74 155130 [21] Wang Y, Shen Y Q and Zhou Z X 2011 Physica B 406 850 [22] Sun H G, Zhou Z X, Yuan C X, Yang W L and Wang H 2012 Chin. Phys. Lett. 29 017303 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|