Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 024213    DOI: 10.1088/0256-307X/30/2/024213
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effect of Phase Noise on the Stationary Entanglement of an Optomechanical System with Kerr Medium
ZHANG Dan1, ZHENG Qiang2**
1School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001
2School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001
Cite this article:   
ZHANG Dan, ZHENG Qiang 2013 Chin. Phys. Lett. 30 024213
Download: PDF(487KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate the effect of phase noise on the stationary entanglement of an optomechanical system, which has the additional Kerr medium in the cavity. There are two kinds of interactions in the system, photon-mirror interaction and photon-photon interaction. We find that the optomechanical entanglement can be suppressed by the phase noise of the pumping laser and Kerr interaction of photons. We also find that Kerr interaction can make the phase-noise-induced double peak of the stationary entanglement change to a single peak.
Received: 04 December 2012      Published: 02 March 2013
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  03.67.Bg (Entanglement production and manipulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/024213       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/024213
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Dan
ZHENG Qiang
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Nielsen M A and Chuang I L 2000 Quantum Computation andQuantum Information (Cambridge: Cambridge University Press)
[3] Zurek W H 2003 Rev. Mod. Phys. 75 715
[4] Armour A D et al 2002 Phys. Rev. Lett. 88 148301
[5] Marshall W et al 2003 Phys. Rev. Lett. 91 130401
[6] Kippenberg T J and Vahala K J 2008 Science 321 1172
[7] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[8] S Gigan et al 2006 Nature 444 67
[9] Thompson J Det al 2008 Nature 452 72
[10] Teufel J D et al 2009 Nat. Nanotechnol. 4 820
[11] Brennecke F et al 2008 Science 322 235
[12] Murch K W et al 2008 Nat. Phys. 4 561
[13] Sun Q, Hu X, Ji A C and Liu W M 2011 Phys. Rev. A 83 043606
[14] Schwab K C and Roukes M L 2005 Phys. Today 58 36
[15] Hammerer K et al 2009 Phys. Rev. Lett. 102 020501
[16] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[17] Shu J 2011 Chin. Phys. Lett. 28 104203
[18] Marquardt F et al 2007 Phys. Rev. Lett. 99 093902
[19] Vitali D et al 2007 Phys. Rev. Lett. 98 030405
[20] Zou C L, Zou X B, et al 2011 Phys. Rev. A 84 032317
[21] Mi X W, Bai J X and Li D J 2012 Chin. Phys. B 21 030303
[22] Zhou L, Han Y, Jing J and Zhang W P 2011 Phys. Rev. A 83 052117
[23] Huang S, Agarwal G S 2009 Phys. Rev. A 79 013821
[24] Kumar T et al 2010 Phys. Rev. A 81 013835
[25] Zheng Q, Li S C and Fu L B 2012 Eur. Phys. J. D 66 271
[26] Diosi L 2008 Phys. Rev. A 78 021801(R)
[27] Yin Z Q 2009 Phys. Rev. A 80 033821
[28] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[29] Imamoglu A et al 1997 Phys. Rev. Lett. 79 1467
[30] Law C K 1995 Phys. Rev. A 51 2537
[31] Rabl P et al 2009 Phys. Rev. A 80 063819
[32] Abdi M et al 2011 Phys. Rev. A 84 032325
[33] Bhattacharya M and Meystre P 2007 Phys. Rev. Lett. 99 153603
[34] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[35] Walls D F and Milburn G J 2008 Quantum Optics 2nd edn (Berlin: Springer-Verlag)
Related articles from Frontiers Journals
[1] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 024213
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 024213
[3] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 024213
[4] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 024213
[5] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 024213
[6] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 024213
[7] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 024213
[8] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 024213
[9] Kun Zhou, Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Zhong-Hua Qian, Qi-Ming Wu, Jian Wang, Ran He, Wei-Min Lv, Chang-Kang Hu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo. An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions[J]. Chin. Phys. Lett., 2017, 34(1): 024213
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 024213
[11] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 024213
[12] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 024213
[13] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 024213
[14] GUO Yan-Qing, DENG Yao, PEI Pei, TONG Dian-Min, WANG Dian-Fu, MI Dong. Quantum State Transfer among Three Ring-Connected Atoms[J]. Chin. Phys. Lett., 2015, 32(06): 024213
[15] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 024213
Viewed
Full text


Abstract