Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 024205    DOI: 10.1088/0256-307X/30/2/024205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Double-Brillouin-Frequency Spaced Multiwavelength Generation in a Ring Brillouin-Erbium Fiber Laser
LI Jun1,2, CHEN Tao1, SUN Jun-Qiang1**, SHEN Xiang2
1Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
2 Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211
Cite this article:   
LI Jun, CHEN Tao, SUN Jun-Qiang et al  2013 Chin. Phys. Lett. 30 024205
Download: PDF(620KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the double-Brillouin-frequency spaced multiwavelength generation at room temperature by using a simple ring Brillouin-erbium fiber laser. The Brillouin pump is pre-amplified before entering the single-mode fiber, the odd Stokes and even Stokes are amplified in two opposite directions. All amplification provided by a home-made bi-directional operation erbium-doped fiber may achieve high intensity of Brillouin Stokes that leads to the homogenous gain saturation. Twelve even Stokes and thirteen odd Stokes with a wavelength spacing of 0.172 nm (20 GHz) are simultaneously obtained for 6 dBm Brillouin pump power and 120 mW pump power at 980 nm. The influence of different Brillouin and erbium-doped-fiber pump powers on multiwavelength and tuning range are investigated in detail.
Received: 23 November 2012      Published: 02 March 2013
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/024205       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/024205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jun
CHEN Tao
SUN Jun-Qiang
SHEN Xiang
[1] Bellemare A, Karasek M, Rochette M, LaRochelle S and Tetu M 2000 J. Lightw. Technol. 18 825
[2] Han Y G, Tran T V A, Kim S H and Lee S B 2005 Opt. Lett. 30 1282
[3] Geng J, Staines S and Jiang S 2008 Opt. Lett. 33 16
[4] Mihelic F, Bacquet D, Zemmouri J and Szriftgiser P 2010 Opt. Lett. 35 432
[5] Hasi W L J, Lü Z W, Li Q and He W M 2007 Chin. Phys. 16 154
[6] Geng D, Yang D X, Shen G F and Zhang X M 2008 Chin. Phys. 17 1020
[7] Han K, Xu X J and Liu Z J 2012 Chin. Phys. B 21 054205
[8] Rahman Z A, Hitam S, Al-Mansoori M H, Abas A F and Mahdi M A 2011 Opt. Express 19 21238
[9] Harun S W, Shirazi M R, Abdul-Rashid H A and Ahmad H 2008 J. Nonlinear Opt. Phys. 17 199
[10] Harun S W, Shirazi M R and Ahmad H 2008 Laser Phys. Lett. 5 48
[11] Parvizi R, Arof H, Ali N M, Ahmad H and Harun S W 2011 Opt. Laser Technol. 43 866
[12] Tang J, Sun J, Chen T and Zhou Y 2011 Opt. Fiber Technol. 17 608
[13] Ahmad B A, Al-Alimi A W, Abas A F, Mokhtar M, Harun S W and Mahdi M A 2012 IEEE Photon. J. 4 1087
[14] Zhang Z X, Wu J, Xu K, Hong X B and Lin J T 2010 Chin. Phys. B 19 064209
[15] Tang J, Sun J, Zhao L, Chen T, Huang T and Zhou Y 2011 Opt. Express 19 14682
[16] Cowle G and Stepanov D Y 1996 Opt. Lett. 21 1250
[17] Shahi S, Harun S, Shahabuddin N S, Shirazi M R and Ahmad H 2009 Opt. Laser Technol. 41 198
[18] Al-Mansoori M H, Iqbal S J, Abdullah M K and Mahdi M A 2006 J. Opt. Soc. Am. B 23 2281
[19] Shirazi M R, Shahabuddin N S, Aziz S N, Thambiratnam K, Harun S W and Ahmad H 2008 Laser Phys. Lett. 5 361
[20] Al-Mansoori M H, Mahdi M A and Premaratne M 2009 IEEE J. Sel. Top. Quantum Electron. 15 415
[21] Al-Mansoori M H, Mahdi M A, Jamaludin M Z, Din N M and Abdullah F 2010 J. Opt. Soc. Am. B 27 1332
[22] Ajiya M, Mahdi M A, Al-Mansoori M H, Mokhtar M and Hitam S 2009 J. Opt. Soc. Am. B 26 1789
[23] Ajiya M, Mahdi M, Al-Mansoori M H, Hitam S and Mokhtar M 2009 Opt. Express 17 5944
[24] Al-Mansoori M H and Mahdi M A 2011 Opt. Express 19 23981
[25] Al-Mansoori M H, Ajiya M and Mahdi M A 2012 IEEE Photon. J. 4 483
[26] Shee Y G, Al-Mansoori M H, Ismail A, Hitam S and Mahdi M A 2011 Opt. Express 19 1699
[27] Shee Y G, Al-Mansoori M H, Yaakob S, Man A, Zamzuri A K, Adikan F R and Mahdi M A 2012 Opt. Express 20 13402
[28] Liu X M, Zhou X Q and Lu C 2005 Opt. Lett. 30 2257
[29] Liu X M, Zhou X Q, Tang X F, Ng J, Hao J Z, Chai T Y, Leong E and Lu C 2005 IEEE Photon. Technol. Lett. 17 1626
[30] Liu X M, Yang X F, Lu F Y, Ng J, Zhou X Q and Lu C 2005 Opt. Express 13 142
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 024205
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 024205
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 024205
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 024205
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 024205
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 024205
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 024205
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 024205
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 024205
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 024205
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 024205
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 024205
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 024205
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 024205
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 024205
Viewed
Full text


Abstract