Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 024204    DOI: 10.1088/0256-307X/30/2/024204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Collisions between Solitons Modulated by Gain/Loss and Phase in the Complex Ginzburg–Landau Equation
LIU Bin**, HE Xing-Dao, LI Shu-Jing
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063
Cite this article:   
LIU Bin, HE Xing-Dao, LI Shu-Jing 2013 Chin. Phys. Lett. 30 024204
Download: PDF(825KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a systematic analysis for influence of phase φ on collisions of dissipative solitons, using the cubic-quintic complex Ginzburg–Landau equation in the absence of viscosity. Four generic outcomes are revealed upon the variation of gain/loss: merger of the two solitons into a single one; quasi-elastic interactions; creation of an extra soliton; and dissipation of the two solitons for in-phase. The velocities of the merger-soliton and the extra soliton can be effectively controlled by relative phase. The above features have potential applications in optical switching and logic gates based on interaction of optical solitons.
Received: 07 November 2012      Published: 02 March 2013
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/024204       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/024204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Bin
HE Xing-Dao
LI Shu-Jing
[1] Aranson S and Kramer L 2002 Rev. Mod. Phys. 74 99
[2] Rosanov N, Akhmediev N and Ankievicz A 2005 Dissipative Solitons (Berlin: Springer-Verlag)
[3] Malomed B A 2005 Encyclopedia of Nonlinear Science (New York: Routledge)
[4] Bakonyi Z, Michaelis D, Peschel U, Onishchukov G and Lederer F 2002 J. Opt. Soc. Am. B 19 487
[5] Ultanir E A, Stegeman G I, Michaelis D, Lange C H and Lederer F 2003 Phys. Rev. Lett. 90 253903
[6] Rosanov N N 2002 Spatial Hysteresis and Optical Patterns (Berlin: Springer)
[7] Petviashvili V I and Sergeev A M 1984 Dokl. Akad. Nauk SSSR 276 1380
[8] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2000 Phys. Rev. Lett. 85 2937
[9] Boudebs G, Cherukulappurath S, Leblond H, Troles J, Smektala F and Sanchez F 2003 Opt. Commun. 219 427
[10] Zhan C, Zhang D, Zhu D, Wang D, Li Y, Li D, Lu Z, Zhao L and Nie Y 2002 J. Opt. Soc. Am. B 19 369
[11] Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C, Torner L and Malomed B A 2006 Phys. Rev. Lett. 97 073904
[12] Vladimirov A G, McSloy J M, Skryabin D V and Firth W J 2002 Phys. Rev. E 65 046606
[13] Skryabin D V and Vladimirov A G 2002 Phys. Rev. Lett. 89 044101
[14] He Y J, Malomed B A and Wang H Z 2007 Opt. Express 15 17502
[15] Liu B, He Y J, Qiu Z R and Wang H Z 2009 Opt. Express 17 12203
[16] Liu B, He Y J, Malomed B A, Wang X S, Kevreids P G, Wang T B, Leng F C, Qiu Z R and Wang H Z 2010 Opt. Lett. 35 1974
[17] Liu B and He X D 2011 Opt. Express 19 20009
[18] Wu Y D 2004 Opt. Express 14 4005
[19] Wu Y D 2004 Opt. Express 12 4172
[20] Wu Y D 2005 IEEE J. Sel. Top. Quantum. Electron. 11 307
[21] Wu Y D 2005 Appl. Opt. 44 4144
[22] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. A 77 033817
[23] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. E 78 056601
[24] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2009 Eur. Phys. J. Spec. Top. 173 245
[25] Wainblat G and Malomed B A 2009 Physica D 238 1143
[26] Mihalache D, Mazilu D and Lederer F 2010 Cent. Eur. J. Phys. 8 77
[27] Lega J, Moloney J V and Newell A C 1994 Phys. Rev. Lett. 73 2978
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 024204
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 024204
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 024204
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 024204
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 024204
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 024204
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 024204
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 024204
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 024204
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 024204
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 024204
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 024204
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 024204
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 024204
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 024204
Viewed
Full text


Abstract