FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Collisions between Solitons Modulated by Gain/Loss and Phase in the Complex Ginzburg–Landau Equation |
LIU Bin**, HE Xing-Dao, LI Shu-Jing |
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063
|
|
Cite this article: |
LIU Bin, HE Xing-Dao, LI Shu-Jing 2013 Chin. Phys. Lett. 30 024204 |
|
|
Abstract We present a systematic analysis for influence of phase φ on collisions of dissipative solitons, using the cubic-quintic complex Ginzburg–Landau equation in the absence of viscosity. Four generic outcomes are revealed upon the variation of gain/loss: merger of the two solitons into a single one; quasi-elastic interactions; creation of an extra soliton; and dissipation of the two solitons for in-phase. The velocities of the merger-soliton and the extra soliton can be effectively controlled by relative phase. The above features have potential applications in optical switching and logic gates based on interaction of optical solitons.
|
|
Received: 07 November 2012
Published: 02 March 2013
|
|
PACS: |
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
|
|
|
[1] Aranson S and Kramer L 2002 Rev. Mod. Phys. 74 99 [2] Rosanov N, Akhmediev N and Ankievicz A 2005 Dissipative Solitons (Berlin: Springer-Verlag) [3] Malomed B A 2005 Encyclopedia of Nonlinear Science (New York: Routledge) [4] Bakonyi Z, Michaelis D, Peschel U, Onishchukov G and Lederer F 2002 J. Opt. Soc. Am. B 19 487 [5] Ultanir E A, Stegeman G I, Michaelis D, Lange C H and Lederer F 2003 Phys. Rev. Lett. 90 253903 [6] Rosanov N N 2002 Spatial Hysteresis and Optical Patterns (Berlin: Springer) [7] Petviashvili V I and Sergeev A M 1984 Dokl. Akad. Nauk SSSR 276 1380 [8] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2000 Phys. Rev. Lett. 85 2937 [9] Boudebs G, Cherukulappurath S, Leblond H, Troles J, Smektala F and Sanchez F 2003 Opt. Commun. 219 427 [10] Zhan C, Zhang D, Zhu D, Wang D, Li Y, Li D, Lu Z, Zhao L and Nie Y 2002 J. Opt. Soc. Am. B 19 369 [11] Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C, Torner L and Malomed B A 2006 Phys. Rev. Lett. 97 073904 [12] Vladimirov A G, McSloy J M, Skryabin D V and Firth W J 2002 Phys. Rev. E 65 046606 [13] Skryabin D V and Vladimirov A G 2002 Phys. Rev. Lett. 89 044101 [14] He Y J, Malomed B A and Wang H Z 2007 Opt. Express 15 17502 [15] Liu B, He Y J, Qiu Z R and Wang H Z 2009 Opt. Express 17 12203 [16] Liu B, He Y J, Malomed B A, Wang X S, Kevreids P G, Wang T B, Leng F C, Qiu Z R and Wang H Z 2010 Opt. Lett. 35 1974 [17] Liu B and He X D 2011 Opt. Express 19 20009 [18] Wu Y D 2004 Opt. Express 14 4005 [19] Wu Y D 2004 Opt. Express 12 4172 [20] Wu Y D 2005 IEEE J. Sel. Top. Quantum. Electron. 11 307 [21] Wu Y D 2005 Appl. Opt. 44 4144 [22] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. A 77 033817 [23] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. E 78 056601 [24] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2009 Eur. Phys. J. Spec. Top. 173 245 [25] Wainblat G and Malomed B A 2009 Physica D 238 1143 [26] Mihalache D, Mazilu D and Lederer F 2010 Cent. Eur. J. Phys. 8 77 [27] Lega J, Moloney J V and Newell A C 1994 Phys. Rev. Lett. 73 2978 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|