Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 023202    DOI: 10.1088/0256-307X/30/2/023202
ATOMIC AND MOLECULAR PHYSICS |
Elliptical High-Order Harmonic Generation from H2+ in Linearly Polarized Laser Fields
ZHANG Bin, ZHAO Zeng-Xiu**
Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
ZHANG Bin, ZHAO Zeng-Xiu 2013 Chin. Phys. Lett. 30 023202
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the elliptical high-order harmonic generation (HHG) from the ground state of H2+ subjected to linearly polarized laser fields, by numerically solving the three-dimensional (3D) time-dependent Schr?dinger equation (TDSE) and using the strong-field approximation (SFA) models. Highly elliptical HHG is yielded at intermedial alignment angles from the TDSE, while the standard SFA model fails to predict this. By including the coulomb potential and the stark shift corrections, we yield qualitative agreement results with the TDSE. The comparisons show that in the description of elliptical HHG, both the coulomb potential and the stark-shift are necessary.
Received: 21 November 2012      Published: 02 March 2013
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/023202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/023202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Bin
ZHAO Zeng-Xiu
[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Posthumus J H 2000 Rep. Prog. Phys. 67 623
[3] Saliéres P, L'Huillier A, Antoine P and Lewenstain M 1999 Adv. At. Mol. Opt. Phys. 41 83
[4] Li P C, Zhou X X and Cheng C Z 2011 Acta Phys. Sin. 60 033203 (in Chinese)
[5] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[6] Kling M F and Vrakking M J J 2008 Annu. Rev. Phys. Chem. 59 463
[7] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
[8] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
[9] Boutu W, Haessler S, Merdji H, Breger P, Waters G, Stankiewicz M, Frasinski L J, Taieb R, Caillat J, Maquet A, Monchicourt P, Carre B and Salieres P 2008 Nat. Phys. 4 545
[10] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett. 102 073902
[11] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
[12] Manakov N L 1996 Sov. Phys. JETP 83 685 [ 1996 Zh. éksp. Teor. Fiz. 110 1244]
[13] Ramakrishna S, Sherratt P A J, Dutoi A D and Seideman T 2010 Phys. Rev. A 81 021802
[14] Son S K, Telnov A D and Chu S I 2010 Phys. Rev. A 82 043829
[15] Chirilǎ C C and Lein M 2009 Phys. Rev. A 80 013405
[16] Etches A, Madsen C B and Madsen L B 2010 Phys. Rev. A 81 13409
[17] Strelkov V V, Gonoskov A A, Gonoskov I A and Ryanikin M Y 2011 Phys. Rev. Lett. 107 043902
[18] Yuan K J and Bandrauk A D 2010 Phys. Rev. A 81 063412
[19] Van der Zwan E V and Lein M 2010 Phys. Rev. A 82 033405
[20] Lewenstein M, Balcou P, Ivanov M Y, L'OHuillier A and P B. Corkum P B 1994 Phys. Rev. A 49 2117
[21] Ivanov M Y, Bracbec T and Burnett N 1996 Phys. Rev. A 54 742
[22] Zhang B, Yuan J M and Zhao Z X 2012 Phys. Rev. A 85 033421
[23] Tao L, McCurdy C W and Rescigno T N 2009 Phys. Rev. A 79 012719
[24] Zeng S L, ZOU S Y and Yan J 2009 Chin. Phys. Lett. 26 053202
[25] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
[26] McFarland B K, Farrell J P, Bucksbaum P H and Gühr M 2008 Science 322 1232
[27] Zhao Z X, Yuan J M and Brabec T 2007 Phys. Rev. A 76 031404(R)
[28] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. A 66 023805
[29] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402
[30] Kjeldsen T K, Bisgaard C Z, Madsen L B and Stapelfeldt H 2005 Phys. Rev. A 71 013418
[31] Dimitrovski D, Martiny C P J and Madsen L B 2010 Phys. Rev. A 82 053404
[32] NIST Web site [http://cccbdb.nidt.gov/expdata.asp]
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 023202
[2] Yingbin Li, Lingling Qin, Aihua Liu, Ke Zhang, Qingbin Tang, Chunyang Zhai, Jingkun Xu, Shi Chen, Benhai Yu, and Jing Chen. Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field[J]. Chin. Phys. Lett., 2022, 39(9): 023202
[3] Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Xiao-Jun Liu. Nonadiabatic and Multielectron Effects in the Attoclock Experimental Scheme[J]. Chin. Phys. Lett., 2020, 37(4): 023202
[4] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 023202
[5] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 023202
[6] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 023202
[7] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 023202
[8] M. Salehi, S. Mirzanejad. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma[J]. Chin. Phys. Lett., 2017, 34(5): 023202
[9] Jian-Xing Hao, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Controlling Three-Dimensional Electron–Electron Correlation via Elliptically Polarized Intense Laser Field[J]. Chin. Phys. Lett., 2017, 34(4): 023202
[10] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 023202
[11] Hong-Dan Zhang, Jing Guo, Yan Shi, Hui Du, Hai-Feng Liu, Xu-Ri Huang, Xue-Shen Liu, Jun Jing. Exploration of High-Harmonic Generation from the CS$_2$ Molecule by the Lewenstein Method in Two-Color Circularly Polarized Laser Field[J]. Chin. Phys. Lett., 2017, 34(1): 023202
[12] Xin-Hai Tu, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin. Phys. Lett., 2016, 33(09): 023202
[13] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 023202
[14] XIA Chang-Long, MIAO Xiang-Yang. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse[J]. Chin. Phys. Lett., 2015, 32(4): 023202
[15] WANG Chuan-Liang, SUN Ren-Ping, CHEN Yong-Ju, GONG Cheng, LAI Xuan-Yang, KANG Hui-Peng, QUAN Wei, LIU Xiao-Jun. Above-Threshold Ionization of Xenon by Chirped Intense Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(06): 023202
Viewed
Full text


Abstract