ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Elliptical High-Order Harmonic Generation from H2+ in Linearly Polarized Laser Fields |
ZHANG Bin, ZHAO Zeng-Xiu** |
Department of Physics, National University of Defense Technology, Changsha 410073
|
|
Cite this article: |
ZHANG Bin, ZHAO Zeng-Xiu 2013 Chin. Phys. Lett. 30 023202 |
|
|
Abstract We investigate the elliptical high-order harmonic generation (HHG) from the ground state of H2+ subjected to linearly polarized laser fields, by numerically solving the three-dimensional (3D) time-dependent Schr?dinger equation (TDSE) and using the strong-field approximation (SFA) models. Highly elliptical HHG is yielded at intermedial alignment angles from the TDSE, while the standard SFA model fails to predict this. By including the coulomb potential and the stark shift corrections, we yield qualitative agreement results with the TDSE. The comparisons show that in the description of elliptical HHG, both the coulomb potential and the stark-shift are necessary.
|
|
Received: 21 November 2012
Published: 02 March 2013
|
|
PACS: |
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
|
|
|
[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 [2] Posthumus J H 2000 Rep. Prog. Phys. 67 623 [3] Saliéres P, L'Huillier A, Antoine P and Lewenstain M 1999 Adv. At. Mol. Opt. Phys. 41 83 [4] Li P C, Zhou X X and Cheng C Z 2011 Acta Phys. Sin. 60 033203 (in Chinese) [5] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [6] Kling M F and Vrakking M J J 2008 Annu. Rev. Phys. Chem. 59 463 [7] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [8] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543 [9] Boutu W, Haessler S, Merdji H, Breger P, Waters G, Stankiewicz M, Frasinski L J, Taieb R, Caillat J, Maquet A, Monchicourt P, Carre B and Salieres P 2008 Nat. Phys. 4 545 [10] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett. 102 073902 [11] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002 [12] Manakov N L 1996 Sov. Phys. JETP 83 685 [ 1996 Zh. éksp. Teor. Fiz. 110 1244] [13] Ramakrishna S, Sherratt P A J, Dutoi A D and Seideman T 2010 Phys. Rev. A 81 021802 [14] Son S K, Telnov A D and Chu S I 2010 Phys. Rev. A 82 043829 [15] Chirilǎ C C and Lein M 2009 Phys. Rev. A 80 013405 [16] Etches A, Madsen C B and Madsen L B 2010 Phys. Rev. A 81 13409 [17] Strelkov V V, Gonoskov A A, Gonoskov I A and Ryanikin M Y 2011 Phys. Rev. Lett. 107 043902 [18] Yuan K J and Bandrauk A D 2010 Phys. Rev. A 81 063412 [19] Van der Zwan E V and Lein M 2010 Phys. Rev. A 82 033405 [20] Lewenstein M, Balcou P, Ivanov M Y, L'OHuillier A and P B. Corkum P B 1994 Phys. Rev. A 49 2117 [21] Ivanov M Y, Bracbec T and Burnett N 1996 Phys. Rev. A 54 742 [22] Zhang B, Yuan J M and Zhao Z X 2012 Phys. Rev. A 85 033421 [23] Tao L, McCurdy C W and Rescigno T N 2009 Phys. Rev. A 79 012719 [24] Zeng S L, ZOU S Y and Yan J 2009 Chin. Phys. Lett. 26 053202 [25] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972 [26] McFarland B K, Farrell J P, Bucksbaum P H and Gühr M 2008 Science 322 1232 [27] Zhao Z X, Yuan J M and Brabec T 2007 Phys. Rev. A 76 031404(R) [28] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. A 66 023805 [29] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402 [30] Kjeldsen T K, Bisgaard C Z, Madsen L B and Stapelfeldt H 2005 Phys. Rev. A 71 013418 [31] Dimitrovski D, Martiny C P J and Madsen L B 2010 Phys. Rev. A 82 053404 [32] NIST Web site [http://cccbdb.nidt.gov/expdata.asp] |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|