Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020701    DOI: 10.1088/0256-307X/30/2/020701
GENERAL |
Synthesis and Improved Acetone Sensing Properties of Porous α-Fe2O3 Nanowires
LIU Li1**, CHI Xiao1, WANG Guo-Guang1, LIU Chang-Bai2, SHAN Hao1, ZHANG Xiao-Bo1, WANG Lian-Yuan1, GUAN Hong-Yu3
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012
2College of Electronic Science and Engineering, Jilin University, Changchun 130012
3College of Chemistry, Northeast Normal University, Changchun 130026
Cite this article:   
LIU Li, CHI Xiao, WANG Guo-Guang et al  2013 Chin. Phys. Lett. 30 020701
Download: PDF(1004KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Porous α-Fe2O3 nanowires are synthesized by a simple wet chemical method with a precursor of peroxyacetyl nitrate (PAN), and α-Fe2O3 nanoparticles are also synthesized in the same way except for the addition of PAN. Gas sensors are fabricated by coating the samples on ceramic tubes with Au signal electrodes and Ni-Cr heaters. A sensing investigation reveals that the porous α-Fe2O3 nanowires have a higher sensitivity compared to α-Fe2O3 nanoparticles at 260°C. The corresponding sensor response (Ra/Rg) is 18.2 at the maximum to 100 ppm acetone, and the response and recovery times are about 8 and 12 s, respectively. The porous and one-dimensional nanostructures of the porous α-Fe2O3 nanowires benefit for the gas-absorption and electrical-signal-transfer, and thus improve the sensor sensitivity consequentially.
Received: 02 August 2012      Published: 02 March 2013
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  82.47.Rs (Electrochemical sensors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Li
CHI Xiao
WANG Guo-Guang
LIU Chang-Bai
SHAN Hao
ZHANG Xiao-Bo
WANG Lian-Yuan
GUAN Hong-Yu
[1] Janata J et al 1994 Anal. Chem. 66 207
[2] Neri G et al 2006 Sens. Actuat. B 117 196
[3] Sahm T et al 2004 Sens. Actuat. B 98 148
[4] Xu L et al 2011 Chin. Phys. Lett. 28 040701
[5] Carney C M et al 2005 Sens. Actuat. B 108 29
[6] Franke M E et al 1994 Anal. Chem. 66 207
[7] Huang X J et al 2007 Sens. Actuat. B 122 659
[8] Francioso L et al 2008 Sens. Actuat. B 130 70
[9] Qiao J P et al 2012 Chin. Phys. Lett. 29 020701
[10] Kolmakov A et al 2005 Adv. Mater. 15 977
[11] Kong J et al 2000 Science 287 622
[12] Liu L et al 2009 Chin. Phys. Lett. 26 090701
[13] Greiner A et al 2007 Angew. Chem. Int. Ed. 46 5670
[14] Qi Q et al 2009 Sens. Actuat. B 137 471
[15] Kolmakov A et al 2004 Annu. Rev. Mater. Res. 34 151
[16] Pan Z W et al 2001 Science 291 1947
[17] Jho J H et al 2008 J. Alloys Comp. 459 386
[18] Yue X J et al 2011 Chin. Phys. Lett. 28 090701
[19] Moos R et al 2009 Sensors 9 4323
[20] Ren T Z et al 2004 Chem. Phys. Lett. 388 46
[21] Par S J et al 2011 Polym. Int. 60 322
[22] Bayat M et al 2011 Polymer 52 1645
[23] Qiu Y et al 2009 Nanoscale. Res. Lett. 4 173
[24] Prahsarn C et al 2011 Mater. Lett. 65 2498
[25] Bondarenka V, Grebinskij S, Mickevi?ius S, Volkov V and Zacharova G 1995 Sens. Actuat. B 28 227
[26] ìnan S et al 2011 Chem. Eng. J. 168 1263
[27] Qi Q et al 2008 Sens. Actuat. B 134 36
[28] Zhang Y et al 2008 Sens. Actuat. B 132 67
[29] Zheng W et al 2009 Mater. Res. Bull. 44 1432
[30] Ren T Z et al 2004 Chem. Phys. Lett. 388 46
[31] Pan Z W et al 2001 Science 291 1947
[32] Qi Q et al 2009 Sens. Actuat. B 141 174
[33] Liu B et al 2003 J. Am. Chem. Soc. 125 4430
[34] Ivanovskaya M et al 1998 Sens. Actuat. B 53 44
[35] Kim S K et al 2010 Sens. Actuat. B 149 28
[36] Chen Y et al 2009 Sens. Actuat. B 137 291
[37] Windischmann H et al 1979 J. Electrochem. Soc. 126 627
[38] Kong J et al 2000 Science 287 622
[39] Kolmakov A et al 2005 Nano Lett. 5 667
[40] Yang Z et al 2008 Sens. Actuat. B 135 57
Related articles from Frontiers Journals
[1] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 020701
[2] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 020701
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 020701
[4] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 020701
[5] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 020701
[6] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 020701
[7] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 020701
[8] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 020701
[9] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 020701
[10] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 020701
[11] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 020701
[12] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 020701
[13] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 020701
[14] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 020701
[15] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 020701
Viewed
Full text


Abstract