Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020501    DOI: 10.1088/0256-307X/30/2/020501
GENERAL |
Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit
ZHOU Ji-Chao1, SONG Han-Jung1,2**
1Department of Nano Systems Engineering, Inje University, Gimhae 621-749, Korea
2Center for Nano Manufacturing, Inje University, Gimhae 621-749, Korea
Cite this article:   
ZHOU Ji-Chao, SONG Han-Jung 2013 Chin. Phys. Lett. 30 020501
Download: PDF(803KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of temperature on a two-phase clock-driven discrete-time chaotic circuit are presented. The circuit for temperature analysis consists of two switches for sample and hold, a source follower, and a nonlinear function for nonlinearity in the feedback. The chaotic dynamics of this circuit, such as time series, state transitions, frequency spectra bifurcation diagrams and Lyapunov exponents are analyzed as functions of the temperature. It is confirmed that the dynamics of the chaotic circuit have a temperature dependence. Further, we find that the circuit can generate discrete chaotic signals only within specific temperature regions.
Received: 29 October 2012      Published: 02 March 2013
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ji-Chao
SONG Han-Jung
[1] May R 1976 Nature 261 459
[2] Parker T S and Chua L O 1987Proc. IEEE 75 982
[3] Aihara K, Takbe T and Toyoda M 1990 Phys. Lett. A 144 333
[4] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[5] Qin Z Y and Lu Q S 2007 Chin. Phys. Lett. 24 886
[6] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[7] Zhou J C and Song H J 2012 J. Korean Phys. Soc. 61 1303
[8] Aihara K 2002 Proc. IEEE 90 919
[9] Song H J and Kwack K D 2002 IEEE Int. Symp. Circuits Syst. 3 73
[10] Dudek P and Juncu V D 2003 Electron. Lett. 39 1431
[11] Rosselló J L et al 2008 IEICE Electron. Express 5 1042
[12] Vadasz L and Grove A S 1966 IEEE Trans. Electron Devices 13 863
[13] Rosenstein M T, Collins J J and De Luca C J 1993 Physica D 65 117
[14] Horio Y, Aihara K and Yamarmoto O 2003 IEEE Trans. Neural Netw. 5 1399
Related articles from Frontiers Journals
[1] Van Ha Nguyen, Hanjung Song. Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study[J]. Chin. Phys. Lett., 2015, 32(03): 020501
[2] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 020501
[3] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 020501
[4] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 020501
[5] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[7] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 020501
[8] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 020501
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 020501
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 020501
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 020501
[12] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 020501
[13] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 020501
[14] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 020501
[15] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 020501
Viewed
Full text


Abstract