Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020306    DOI: 10.1088/0256-307X/30/2/020306
GENERAL |
Operator Product Formulas in the Algebraic Approach of the Refined Topological Vertex
CAI Li-Qiang, WANG Li-Fang**, WU Ke, YANG Jie
School of Mathematical Sciences, Capital Normal University, Beijing 100048
Cite this article:   
CAI Li-Qiang, WANG Li-Fang, WU Ke et al  2013 Chin. Phys. Lett. 30 020306
Download: PDF(481KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The refined topological vertex of Iqbal–Koz?az–Vafa has been investigated from the viewpoint of the quantum algebra of type W1+∞ by Awata, Feigin, and Shiraishi. They introduced the trivalent intertwining operator ? which is normal ordered along with some prefactors. We manage to establish formulas from the infinite operator product of the vertex operators and the generalized ones to restore this prefactor, and obtain an explicit formula for the vertex realization of the topological vertex as well as the refined topological vertex.
Received: 26 October 2012      Published: 02 March 2013
PACS:  03.70.+k (Theory of quantized fields)  
  11.25.Hf (Conformal field theory, algebraic structures)  
  02.10.Ox (Combinatorics; graph theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020306       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Li-Qiang
WANG Li-Fang
WU Ke
YANG Jie
[1] Awata H, Feigin B and Shiraishi J 2011 arXiv:1112.6074[hep-th]
[2] Iqbal A, Koz?az C and Vafa C 2009 J. High Energy Phys. 10 069
[3] Eguchi T and Kanno H 2003 J. High Energy Phys. 12 006
[4] Dimofte T and Gukov S 2010 Lett. Math. Phys. 91 1
[5] Awata H and Kanno H 2005 J. High Energy Phys. 0505 039
[6] Awata H and Kanno H 2009 Internat. J. Mod. Phys. A24 2253
[7] Macdonald I G 1995 Symmetric Functions and Hall Polynomials (Oxford: Oxford University)
[8] Aganagic M, Klemm A, Marino M and Vafa C 2005 Commun. Math. Phys. 254 425
[9] Feigin B, Hashizume K, Hoshino A, Shiraishi J and Yanagida S 2009 J. Math. Phys. 50 095215
[10] Taki M 2008 J. High Energy Phys. 0803 048
[11] Miki K 2007 J. Math. Phys. 48 123520
[12] Nakajima H and Yoshioka K 2003 arXiv:0311058v1[math.AG]
[13] Ding J and Iohara K 1997 Lett. Math. Phys. 41 181
[14] Feigin B, Feigin E, Jimbo M, Miwa T and Mukhin E 2011 Kyoto J. Math. 51 337
[15] Feigin B, Feigin E, Jimbo M, Miwa T and Mukhin E 2011 Kyoto J. Math. 51 365
[16] Feigin B and Tsymbaliuk A 2009 arXiv:0904.1679v1[math.RT]
[17] Iqbal A and Kozcaz C 2011 arXiv:1111.0525v1[hep-th]
[18] Mironov A, Morozov A and Shakirov S 2011 J. High Energy Phys. 1102 067
[19] Nakajima H and Yoshioka K 2005 Invent. Math. 162 313
[20] Nakajima H and Yoshioka K 2005 Transform. Groups 10 489
[21] Nekrasov N 2003 Adv. Theor. Math. Phys. 7 831
[22] Okounkov A and Reshetikhin N 2007 Commun. Math. Phys. 269 571
[23] Okounkov A, Reshetikhin N and Vafa C 2003 arXiv:0309208v2[hep-th]
[24] Schiffmann O and Vasserot O 2012 arXiv:0905.2555v3[math.QA]
[25] Feigin B, Jimbo M, Miwa T and Mukhin E 2011 arXiv:1110.5310v1 [math.QA]
Related articles from Frontiers Journals
[1] Jie Ren. From Elastic Spin to Phonon Spin: Symmetry and Fundamental Relations[J]. Chin. Phys. Lett., 2022, 39(12): 020306
[2] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 020306
[3] ZHANG Ming, YANG Zhan-Ying, YUE Rui-Hong. Spontaneous Emission of a Two-Level Static Atom Coupling with Electromagnetic Vacuum Fluctuations Outside a High-Dimensional Einstein Gauss-Bonnet Black Hole[J]. Chin. Phys. Lett., 2014, 31(10): 020306
[4] LIU Kang, XIAO Huai-Tie, FAN Hong-Qi. Analysis and Simulation of Quantum Radar Cross Section[J]. Chin. Phys. Lett., 2014, 31(03): 020306
[5] JIANG Ya-Jing, SUN Jing-Xin, JING Hui. Laser-Catalyzed Domain Formation in Spinor-1 Bose Condensates[J]. Chin. Phys. Lett., 2012, 29(11): 020306
[6] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 020306
[7] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 020306
[8] CHENG Hong-Bo. The Casimir Force between Parallel Plates in Randall--Sundrum I Model[J]. Chin. Phys. Lett., 2010, 27(3): 020306
[9] GENG Zhen-Duo, JIA Ning, ZHAO Xu, XIA Tian-Yu, JING Hui. Adiabatic Fidelity of Coherent Atom-Heteronuclear Molecule Conversion[J]. Chin. Phys. Lett., 2010, 27(3): 020306
[10] XIONG Ai-Min, CHEN Xiao-Song. Casimir Force of Piston Systems with Arbitrary Cross Sections under Different Boundary Conditions[J]. Chin. Phys. Lett., 2009, 26(6): 020306
[11] ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 020306
[12] JING Hui. Generation of Coherent Trimers from Bose-Condensed Atoms via a Generalized Stimulated Raman Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(3): 020306
[13] JING Hui, GENG Zhen-Duo. Efimov Superchemistry: Quantum Dynamical Theory for Coherent Atom--Trimer Conversion in a Repulsive Atomic Bose--Einstein Condensate[J]. Chin. Phys. Lett., 2008, 25(3): 020306
[14] ZHAO Yan, SHAO Cheng-Gang, LUO Jun. Finite Temperature Casimir Effect for Corrugated Plates[J]. Chin. Phys. Lett., 2006, 23(11): 020306
[15] SHU Wei-Xing, YU Hong-Wei, REN Zhong-Zhou, WU Pu-Xun, LI Fei. Lower Bounds on Negative Energy Densities for the Scalar Field in Flat Spacetime[J]. Chin. Phys. Lett., 2006, 23(1): 020306
Viewed
Full text


Abstract