Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020204    DOI: 10.1088/0256-307X/30/2/020204
GENERAL |
Finding Discontinuous Solutions to the Differential-Difference Equations by the Homotopy Analysis Method
ZOU Li1,2,5**, ZOU Dong-Yang1,2, WANG Zhen4, ZONG Zhi2,3
1School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116085
2State Key Laboratory of Structure Analysis for Industrial Equipment, Dalian 116085
3School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116085
4Department of Applied Mathematics, Dalian University of Technology, Dalian 116085
5Department of Mathematics, Fluid Dynamics Group, Imperial College, London SW7 2AZ, UK
Cite this article:   
ZOU Li, ZOU Dong-Yang, WANG Zhen et al  2013 Chin. Phys. Lett. 30 020204
Download: PDF(444KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytic method, namely the homotopy analysis method, is applied to nonlinear problems with discontinuity governed by the differential-difference equation. Purely analytic solutions are given for nonlinear problems with discontinuity with a global convergence. This method provides a new analytical approach to solve nonlinear problems with discontinuity. Comparisons are made between the results of the proposed method and the exact solutions. The results reveal that the proposed method is very effective and convenient.
Received: 22 July 2012      Published: 02 March 2013
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Gf (Algorithms for functional approximation)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020204       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZOU Li
ZOU Dong-Yang
WANG Zhen
ZONG Zhi
[1] Liao S J 2003 Beyond Perturbation: Introduction Homotopy Analysis Method (Beijing: Science Press) chap 1 p 5
[2] Liao S J 1992 PhD Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)
[3] Abbasbandy S 2010 Nonlinear Anal.: Real World Appl. 11 307
[4] Abbasbandy S 2007 Int. Commun. Heat Mass Transfer 34 380
[5] Mohammad M R and Dinarvand S 2009 Nonlinear Anal.: Real World Appl. 10 2346
[6] Mustafa I 2008 Math. Comput. Simul. 79 189
[7] Ziabakhsh Z and Domairry G 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1868
[8] Mustafa I 2008 Phys. Lett. A 372 356
[9] Abbasbandy 2008 Chem. Eng. J. 136 144
[10] Liao S J and Cheung K F 2003 J. Eng. Math. 45 105
[11] Ayub M, Rasheed A and Hayat T 2003 Int. J. Eng. Sci. 41 2091
[12] Hayat T, Khan M and Ayub M 2004 Int. J. Eng. Sci. 42 123
[13] Cheng J, Liao S J and Mohapatra R N et al 2008 J. Math. Anal. Appl. 343 233
[14] Xu H 2009 Math. Comput. Model. 49 770
[15] Wu Y, Wang C and Liao S J 2004 Chaos Solitons Fractals 23 1733
[16] Wu W, Liao S J 2005 Chaos Solitons Fractals 26 177
[17] Wang Z, Zou L and Zhang H Q 2007 Phys. Lett. A 369 77
[18] Zou L, Zong Z and Z Wang L 2007 Phys. Lett. A 370 287
[19] Wang Z 2009 Comput. Phys. Commun. 180 1104
[20] Liao S J 2012 Homotopy Analysis Method Nonlinear Differential Equations (Beijing: Higher Education Press) chap 3 p 119
[21] Wang Z and Zhang H Q 2009 Chaos Solitons Fractals 40 676
Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 020204
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 020204
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 020204
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 020204
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 020204
[6] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 020204
[7] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 020204
[8] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 020204
[9] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 020204
[10] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 020204
[11] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 020204
[12] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 020204
[13] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 020204
[14] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 020204
[15] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 020204
Viewed
Full text


Abstract