Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020202    DOI: 10.1088/0256-307X/30/2/020202
GENERAL |
Effective Jump Length of Coupled Continuous Time Random Walk
LIU Jian, BAO Jing-Dong**
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
LIU Jian, BAO Jing-Dong 2013 Chin. Phys. Lett. 30 020202
Download: PDF(417KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The concept effective jump length is proposed. Due to the joint probability density function of jump length and waiting time, it is complicated to distinguish the diffusion types. However, we calculate the probability density function of effective jump length for the coupled continuous time random walk model we proposed previously. The mean square displacements deduced are coincident with the known results. More importantly, we find that the anomalous diffusion induced by the coupled model is equivalent to the competition between long jump length and long waiting time.
Received: 20 October 2012      Published: 02 March 2013
PACS:  02.50.Ey (Stochastic processes)  
  05.40.Fb (Random walks and Levy flights)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jian
BAO Jing-Dong
[1] Bouchaud J P and Georges A 1990 Phys. Rep. 195 127
[2] Havlin S and Ben-Avrahm D 1987 Adv. Phys. 36 695
[3] Bao J D and Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
[4] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[5] Haus W and Kehr K W 1987 Phys. Rep. 150 263
[6] Tejedor V and Metzler R 2010 J. Phys. A: Math. Theor. 43 082002
[7] Metzler R, Klafter J and Sokolov I M 1998 Phys. Rev. E 58 1621
[8] Montroll E W 1956 J. SIAM 4 241
[9] Montroll E W and Weiss G H 1969 J. Math. Phys. 10 753
[10] Jespersen S, Metzler R and Fogedby H C 1999 Phys. Rev. E 59 2736
[11] Fogedby H C 1994 Phys. Rev. Lett. 73 2517
[12] Chechkin A V, Hofmann M and Sokolov I M 2009 Phys. Rev. E 80 031112
[13] Blumen A, Zumofen and Klafter J 1989 Phys. Rev. A 40 3964
[14] Shlesinger M F, West B J and Klafter J 1987 Phys. Rev. Lett. 58 1100
[15] Iyengar N et al 1996 Am. J. Physiol. 271 R1078
[16] Meerschaert M M, Nane E and Xiao Y 2009 Stat. Probab. Lett. 79 1194
[17] Chechkin A V, Hofmann M and Sokolov I M 2009 Phys. Rev. E 80 031112
[18] Liu J and Bao J D 2012 Physica A (in press)
Related articles from Frontiers Journals
[1] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 020202
[2] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 020202
[3] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 020202
[4] Yang Song, Jing-Dong Bao. Giant Enhancement of Diffusion in a Tilted Egg-Carton Potential[J]. Chin. Phys. Lett., 2016, 33(02): 020202
[5] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 020202
[6] HAN Jie, BAO Jing-Dong. Harmonic Noise-Induced Resonant Passing in an Inverse Harmonic Potential[J]. Chin. Phys. Lett., 2014, 31(12): 020202
[7] WANG Yan-Zhi, ZHANG Zhi-Xiong, SHI Yi-Peng, SHE Zhen-Su. Synthetic Turbulence Constructed by Self-Learning Fractal Interpolation[J]. Chin. Phys. Lett., 2012, 29(10): 020202
[8] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[9] LÜ, Yan**, BAO Jing-Dong . Inertial Lévy Flight with Nonlinear Friction[J]. Chin. Phys. Lett., 2011, 28(11): 020202
[10] C. F. Lo. Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics[J]. Chin. Phys. Lett., 2010, 27(8): 020202
[11] YANG Yue, HU Han-Ping, XIONG Wei, CHEN Jiang-Hang . Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory[J]. Chin. Phys. Lett., 2010, 27(6): 020202
[12] ZHANG Li, CAO Li. Effect of Correlated Noises in a Genetic Model[J]. Chin. Phys. Lett., 2010, 27(6): 020202
[13] MENG Qing-Kuan, ZHU Jian-Yang. Self-Organization of Weighted Networks in Connection with the Misanthrope Process[J]. Chin. Phys. Lett., 2009, 26(8): 020202
[14] HAN Li-Bo, GONG Xiao-Long, CAO Li, WU Da-Jin. Influence of Coloured Correlated Noises on Probability Distribution and Mean of Tumour Cell Number in the Logistic Growth Model[J]. Chin. Phys. Lett., 2007, 24(3): 020202
[15] ZHONG Wei-Rong, SHAO Yuan-Zhi, HE Zhen-Hui. Correlated Noises in a Prey--Predator Ecosystem[J]. Chin. Phys. Lett., 2006, 23(3): 020202
Viewed
Full text


Abstract