Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020201    DOI: 10.1088/0256-307X/30/2/020201
GENERAL |
Numerical Computation of the Tau Approximation for the Delayed Burgers Equation
F. Khaksar Haghani*, S. Karimi Vanani, J. Sedighi Hafshejani
Department of Mathematics, Islamic Azad University, Shahrekord Branch, P.O. Box 166, Shahrekord, Iran
Cite this article:   
F. Khaksar Haghani, S. Karimi Vanani, J. Sedighi Hafshejani 2013 Chin. Phys. Lett. 30 020201
Download: PDF(396KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate an efficient extension of the operational Tau method for solving the delayed Burgers equation(DBE) arising in physical problems. This extension gives a useful numerical algorithm for the DBE including linear and nonlinear terms. The orthogonality of the Laguerre polynomials as the basis function is the main characteristic behind the method to decrease the volume of computations and runtime of the method. Numerical results are also presented for some experiments to demonstrate the usefulness and accuracy of the proposed algorithm.
Received: 26 July 2012      Published: 02 March 2013
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.60.-x (Numerical approximation and analysis)  
  87.55.kd (Algorithms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
F. Khaksar Haghani
S. Karimi Vanani
J. Sedighi Hafshejani
[1] Hale J K and Lunel S M V 1993 Introduction to Functional Differential Equations (New York: Springer-Verlag)
[2] Vanani S K and Aminataei A 2009 Math. Comput. Model. 49 234
[3] Vanani S K and Aminataei A 2010 J. Appl. Funct. Anal. 5 169
[4] Salamon D 1984 Control and Observation of Neutral Systems (Boston: Pitman Advanced Publishing Program)
[5] Fahmya E S, Abdusalam H A and Raslan K R 2008 Nonlinear Anal. 69 4775
[6] Ortiz E L and Samara H 1981 Computing 27 15
[7] Lanczos C 1938 Computing 17 123
[8] Ortiz E L and Samara H 1983 Computing 31 95
[9] Liu K M and Ortiz E L 1986 Comput. Math. Appl. 12 1153
[10] Ortiz E L and Pun K S 1985 J. Comput. Appl. Math. 12 511
[11] Ortiz E L and Samara H 1984 Comput. Math. Appl. 10 5
[12] Vanani S K and Aminataei A 2011 Comput. Appl. Math. 30 655
Related articles from Frontiers Journals
[1] Long Xiong, Wei-Feng Zhuang, and Ming Gong. Dynamics of Quantum State and Effective Hamiltonian with Vector Differential Form of Motion Method[J]. Chin. Phys. Lett., 2022, 39(7): 020201
[2] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 020201
[3] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 020201
[4] CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong. Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2014, 31(04): 020201
[5] WANG Xing, MA Tian-Bao, NING Jian-Guo. A Pseudo Arc-Length Method for Numerical Simulation of Shock Waves[J]. Chin. Phys. Lett., 2014, 31(03): 020201
[6] HOU Shen-Yong, YU Sheng, LI Hong-Fu. Ohmic Losses in Coaxial Cavity Gyrotron with Outer Corrugation [J]. Chin. Phys. Lett., 2013, 30(12): 020201
[7] ZOU Li, ZOU Dong-Yang, WANG Zhen, ZONG Zhi. Finding Discontinuous Solutions to the Differential-Difference Equations by the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2013, 30(2): 020201
[8] A. Yildirim, A. Gökdoğan, M. Merdan, V. Lakshminarayanan. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens[J]. Chin. Phys. Lett., 2012, 29(7): 020201
[9] PAN Feng, XIE Ming-Xia, SHI Chang-Liang, J. P. DRAAYER. Quasi-exactly Solvable Cases of the N-Dimensional Symmetric Quartic Anharmonic Oscillator[J]. Chin. Phys. Lett., 2012, 29(7): 020201
[10] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 020201
[11] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 020201
[12] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 020201
[13] Junaid Ali Khan*, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations[J]. Chin. Phys. Lett., 2011, 28(2): 020201
[14] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 020201
[15] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 020201
Viewed
Full text


Abstract