GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
The Nucleon Direct Urca Processes in a Cooling Neutron Star |
XU Yan1, LIU Guang-Zhou2, LIU Cheng-Zhi1**, FAN Cun-Bo1, WANG Hong-Yan3, ZHU Ming-Feng2, ZHAO En-Guang4 |
1Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117 2Center for Theoretical Physics, Jilin University, Changchun 130012 3College of Physics, Beihua University, Jilin 132013 4Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
XU Yan, LIU Guang-Zhou, LIU Cheng-Zhi et al 2013 Chin. Phys. Lett. 30 129501 |
|
|
Abstract In the relativistic mean field approximation, the relativistic energy losses of the nucleon direct Urca processes are studied in the degenerate baryon matter of neutron stars. We investigate the effects of hyperon degrees of freedom and the isovector scalar interaction which is considered by exchanging δ meson on the nucleon direct Urca processes in neutron star matter. The results indicate that the existence of hyperons decreases the abundance of protons and leptons and can sharply suppress the neutrino emissivity of the nucleon direct Urca processes, while it has only a little influence on the neutrino luminosity for a fixed neutron star whether δ mesons appear in a neutron star or not. However, the presence of δ mesons can result in obvious growth in the neutrino emissivity and luminosity which will speed up the cooling rate for the nonsuperfluid neutron star.
|
|
Received: 23 July 2013
Published: 13 December 2013
|
|
PACS: |
95.30.Cq
|
(Elementary particle processes)
|
|
21.65.-f
|
(Nuclear matter)
|
|
26.60.-c
|
(Nuclear matter aspects of neutron stars)
|
|
21.60.-n
|
(Nuclear structure models and methods)
|
|
24.10.Jv
|
(Relativistic models)
|
|
|
|
|
[1] Kaminker A D, Haensel P, Yakovlev D G 2001 Astron. Astrophys. 373 L17 [2] Yakovlev D G, Pethick C J 2004 Ann. Rev. Astron. Astrophys. 42 169 [3] Boguta J 1981 Phys. Lett. B 106 255 [4] Page D and Applegate J H 1992 Astrophys. J. 394 L17 [5] Leinson L B 2002 Nucl. Phys. A 707 543 [6] Glendenning N K 1985 Astrophys. J. 293 470 [7] Glendenning N K, Moszkowski S A 1991 Phys. Rev. Lett. 67 2414 [8] Yang F, Shen H 2008 Phys. Rev. C 77 025801 [9] Yu Z, Ding W B 2011 Commun. Theor. Phys. 55 643 [10] Lattimer J M, Prakash M and Pethick C J 1991 Phys. Rev. Lett. 66 2701 [11] Leinson L B and P érez A 2001 Phys. Lett. B 518 15 [12] Kubis S and Kutschera M 1997 Phys. Lett. B 399 191 [13] Kubis S, Kutschera M and Stachniewicz S 1998 Acta Phys. Pol. B 29 809 [14] Liu B, Greco V and Baran V 2002 Phys. Rev. C 65 045201 [15] Menezes D P and Providência C 2004 Phys. Rev. C 70 058801 [16] Liu B, Guo H, di Toro M and Greco V 2005 Eur. Phys. J. A 25 293 [17] Yu Z, Liu G Z, Zhu M F et al 2009 Chin. Phys. Lett. 26 022601 [18] Xu Y, Liu G Z, Wu Y R et al 2012 Plasma Sci. Technol. 14 375 [19] Xu Y, Liu G Z, Liu C Z et al 2013 Chin. Phys. Lett. 30 062101 [20] Schaffner J and Mishustin I N 1996 Phys. Rev. C 53 1416 [21] Bednarek I and Manka R 2005 J. Phys. G: Nucl. Part. Phys. 31 1009 [22] Xu Y, Liu G Z, Wu Y R et al 2011 Chin. Phys. Lett. 28 079701 [23] Yu Z and Ding W B 2011 Commun. Theor. Phys. 55 643 [24] Ding W B, Liu G Z, Zhu M F et al 2010 Commun. Theor. Phys. 54 500 [25] Xu Y, Liu G Z, Wang H Y et al 2012 Chin. Phys. Lett. 29 059701 [26] Mi A J, Zuo W, Burgio G et al 2007 Chin. Phys. B 16 1934 [27] Ding W B, Liu G Z, Zhu M F et al 2008 Chin. Phys. Lett. 25 458 [28] Batty C J, Friedman E and Gai A 1994 Phys. Lett. B 335 273 [29] Simon B 1983 Ann. Phys. 146 209 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|