Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 128402    DOI: 10.1088/0256-307X/30/12/128402
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Enhanced Performance in Perovskite Organic Lead Iodide Heterojunction Solar Cells with Metal-Insulator-Semiconductor Back Contact
SHI Jiang-Jian1,2,3, DONG Wan4, XU Yu-Zhuan1,2,3, LI Chun-Hui1,2,3, LV Song-Tao1,2,3, ZHU Li-Feng1,2,3, DONG Juan1,2,3, LUO Yan-Hong1,2,3, LI Dong-Mei1,2,3, MENG Qing-Bo1,2,3**, CHEN Qiang4**

SHI Jiang-Jian, DONG Wan, XU Yu-Zhuan, LI Chun-Hui, LV Song-Tao, ZHU Li-Feng, DONG Juan, LUO Yan-Hong, LI Dong-Mei, MENG Qing-Bo, CHEN Qiang
1Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190
2Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190
3Institute of Physics, Chinese Academy of Sciences, Beijing 100190
4Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600
Cite this article:   
HI Jiang-Jian, DONG Wan, XU Yu-Zhuan et al  2013 Chin. Phys. Lett. 30 128402
Download: PDF(697KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal-insulator-semiconductor back contact has been employed for a perovskite organic lead iodide heterojunction solar cell, in which an ultrathin Al2O3 film as an insulating layer was deposited onto the CH3NH3PbI3 by atomic layer deposition technology. The light-to-electricity conversion efficiency of the devices is significantly enhanced from 3.30% to 5.07%. Further the impedance spectrum reveals that this insulating layer sustains part of the positive bias applied in the absorber region close to the back contact and decreases the carrier transport barrier, thus promoting transportation of carriers.

Received: 29 November 2013      Published: 13 December 2013
PACS:  84.60.Jt (Photoelectric conversion)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/128402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/128402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HI Jiang-Jian
DONG Wan
XU Yu-Zhuan
LI Chun-Hui
LV Song-Tao
ZHU Li-Feng
DONG Juan
LUO Yan-Hong
LI Dong-Mei
MENG Qing-Bo
CHEN Qiang

[1] Grätzel M 2005 Inorg. Chem. 44 6841
[2] Zhang Y D, Huang X M, Li D M, Luo Y H and Meng Q B 2012 Sol. Energy Mater. Sol. Cells 98 417
[3] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Park N G 2013 J. Phys. Chem. Lett. 4 2423
[4] Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[5] Liu M M, Johnston B and Snaith H J 2013 Nature 501 395
[6] Ding I K, Melas-Kyriazi J, Cevey-Ha N L, Chittibabu K G, Zakeeruddin S M, Gratzel M, McGehee M D 2010 Org. Electron. 11 1217
[7] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin Md K and Grätzel M 2012 J. Am. Chem. Soc. 134 17396
[8] Laban W A and Etgar L 2013 Energy Environ. Sci. 6 3249
[9] Sze S M and Kwok K Ng 2006 (Physics of Semiconductor Devices 3rd edn (New York: Wiley)
[10] Padovani F A and Stratton R 1966 Solid-State Electron. 9 695
[11] Crowell C R and Rideout V L 1969 Solid-State Electron. 12 89
[12] Godfrey R B and Green M A 1979 Appl. Phys. Lett. 34 790
[13] Green M A, Blakers A W, Shi J Q, Keller E M and Wenham S R 1984 IEEE Trans. Electron Devices 31 679
[14] Ritala M and Leskela M 1999 Nanotechnology 10 19
[15] Hegedus S S and Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155
[16] Guo X Z, Luo Y H, Zhang Y D, Huang X C, Li D M and Meng Q B 2010 Rev. Sci. Instrum. 81 103106
Halaoui L I, Abrams N M and Mallouk T E 2005 J. Phys. Chem. B 109 6334
[17] Kim H S, Ivan M S, Victoria G P, Francisco F S, Emilio J J P, Park N G and Bisquert J 2013 Nat. Commun. 4 3242
[18] Kern R, Sastrawan R, Ferber J, Stangl R and Luther J 2002 Electrochim. Acta 47 4213
[19] Dualeh A, Moehl T, Nazeeruddin M K and Grätzel M 2013 ACS Nano 7 2292
[20] Li W Z, Li J L, Wang L D, Niu G D, Gao R and Qiu Y 2013 J. Mater. Chem. A 1 11735
[21] Hoex B, Schmidt J, Bock R, Altermatt P P, van de Sanden M C M and Kessels W M M 2007 Appl. Phys. Lett. 91 112107
[22] Schmidt J, Merkle A, Brendel R, Hoex B, van de Sanden M C M and Kessels W M M 2008 Prog. Photovolt.: Res. Appl. 16 461
[23] Chen C, He H, Lu Y, Wu K and Ye Z 2013 ACS Appl. Mater. Interfaces 5 6354
[24] Niu G D, Li W Z, Meng F Q, Wang L D, Dong H P and Qiu Y 2014 J. Mater. Chem. A (accepted)

29 November 2013 and accepted by LI Jian-Qi

Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 128402
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 128402
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 128402
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 128402
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 128402
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 128402
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 128402
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 128402
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 128402
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 128402
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 128402
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 128402
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 128402
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 128402
[15] LI Li, YU Dong, WU Shi-Liang, WANG Wei, LIU Wen-Chao, WU Xiao-Shan, ZHANG Feng-Ming. Conversion Efficiency Enhancement of Multi-crystalline Si Solar Cells by Using a Micro-structured Junction[J]. Chin. Phys. Lett., 2015, 32(11): 128402
Viewed
Full text


Abstract