Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 128201    DOI: 10.1088/0256-307X/30/12/128201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Frequency Gradient with Respect to Temperature for Determination of Classification of the Phase Response Curve
Yasuomi D. Sato**
Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe University, Ruth-Moufang-Str.1, D60438, Frankfurt am Main, Germany
Cite this article:   
Yasuomi D. Sato 2013 Chin. Phys. Lett. 30 128201
Download: PDF(1168KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interesting task here is to study the frequency-current (fI) curve and phase response curve (PRC), subject to neural temperature variations, because the fI curve and PRC are important measurements to understand dynamical mechanisms of generation of neural oscillations, and the neural temperature is widely known to significantly affect the oscillations. Nevertheless, little is discussed about how the temperature affects the fI curve and PRC. In this study, frequencies of the neural oscillations, modulated with the temperature variations, are quantified with an average of the PRC. The frequency gradient with respect to temperature derived here gives clear classifications of the PRC, regardless of the form. It is also indicated that frequency decreases with an increase in temperature, resulted from bifurcation switching of the saddle-homoclinic to the saddle-node on an invariant circle.
Received: 01 August 2013      Published: 13 December 2013
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
  87.19.L- (Neuroscience)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/128201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/128201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yasuomi D. Sato
[1] Lu C B et al 2012 Acta Pharmacol. Sin. 33 214
[2] Yoshioka M 2005 Phys. Rev. E 71 065203
[3] Sato Y D et al 2012 Phys. Rev. E 85 031910
[4] Braun H A et al 1998 Int. J. Bifurcation Chaos Appl. Sci. Eng. 8 881
[5] Rosenthal J J C and Bezanilla F 2000 Biol. Bull. 199 135
[6] Huber M T and Braun H A 2006 Phys. Rev. E 73 041929
[7] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[8] Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Cambridge, MA: MIT Press)
[9] Wang X J and Buzsáki G 1996 J. Neurosci. 16 6402
[10] Sato Y D and Shiino M 2007 Phys. Rev. E 75 011909
[11] Tsubo Y et al 2007 Phys. Rev. Lett. 99 228101
[12] Ko T W and Ermentrout G B 2009 Phys. Rev. E 79 016211
[13] Schwemmer M A and Lewis T J 2011 Phys. Rev. E 83 031906
[14] Sato Y D 2013 Europhys. Lett. 102 58004
[15] Ermentrout B 2003 Neural Comput. 15 2483
[16] Terman D and Wang D L 1995 Physica D 81 148
[17] Hindmarsh J L and Rose R M 1982 Nature 296 162
[18] Tsuji S et al 2007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 985
[19] Sato Y D and Aihara K 2013 Neural Comput. (to be submitted)
[20] FitzHugh R 1961 Biophys. J. 1 445
[21] Feudel U et al 2000 Chaos 10 231
[22] Ota K et al 2009 Phys. Rev. Lett. 103 024101
[23] Ichiki A and Sato Y D 2011 Proc. ISNN'11 1 251
Related articles from Frontiers Journals
[1] Yasuomi D. Sato. Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators[J]. Chin. Phys. Lett., 2018, 35(5): 128201
[2] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 128201
[3] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 128201
[4] Van Ha Nguyen, Hanjung Song. Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study[J]. Chin. Phys. Lett., 2015, 32(03): 128201
[5] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 128201
[6] LI Xiang-Hong, BI Qin-Sheng . Cusp Bursting and Slow-Fast Analysis with Two Slow Parameters in Photosensitive Belousov–Zhabotinsky Reaction[J]. Chin. Phys. Lett., 2013, 30(7): 128201
[7] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 128201
[8] ZHOU Ji-Chao, SONG Han-Jung. Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit[J]. Chin. Phys. Lett., 2013, 30(2): 128201
[9] LI Xiang-Hong, BI Qin-Sheng. Single-Hopf Bursting in Periodic Perturbed Belousov–Zhabotinsky Reaction with Two Time Scales[J]. Chin. Phys. Lett., 2013, 30(1): 128201
[10] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 128201
[11] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 128201
[12] CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi. Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx[J]. Chin. Phys. Lett., 2010, 27(1): 128201
[13] MENG Pan, LU Qi-Shao. Dynamical Effect of Calcium Pump on Cytosolic Calcium Bursting Oscillations with IP3 Degradation[J]. Chin. Phys. Lett., 2010, 27(1): 128201
[14] CHEN Xi, GAO Yong, YANG Yuan. A Novel Method for the Initial-Condition Estimation of a Tent Map[J]. Chin. Phys. Lett., 2009, 26(7): 128201
[15] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 128201
Viewed
Full text


Abstract