CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature-Induced Plasma Frequency Shift in Bi2Te3 and CuxBi2Se3 |
DONG Tao, YUAN Rui-Hua, SHI You-Guo, WANG Nan-Lin** |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
DONG Tao, YUAN Rui-Hua, SHI You-Guo et al 2013 Chin. Phys. Lett. 30 127801 |
|
|
Abstract We present an optical spectroscopy study on Bi2Se3, Bi2Te3, Sn-doped Bi2Te3 and Cu-intercalated Bi2Se3 crystals grown by self-melting. We find that the plasma edge of Bi2Se3 slightly shifts to lower energy with decreasing temperature. The Cu-intercalated Bi2Se3 shows a superconducting transition near 3.1 K. Optical spectroscopy measurement shows that the plasma edge shifts substantially to higher frequency 1250 cm?1 indicating that Cu-doping supplies extra electrons to the system and further shifts the chemical potential up. Furthermore, our measurement reveals that the plasma edge of Bi2Te3, Sn doped Bi2Te3?δSnδ(δ=0.67%) and Cu-intercalated Bi2Se3 shift slightly to higher energies with decreasing temperature. Combined with the band calculation, we attribute the blue-shift primarily to the reduction of effective mass of carriers with decreasing temperature. The optical data yield useful information about the bulk electronic band structure of the superconducting doped topological insulator CuxBi2Se3 (x=0.14).
|
|
Received: 30 August 2013
Published: 13 December 2013
|
|
PACS: |
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
74.25.Gz
|
(Optical properties)
|
|
|
|
|
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [3] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [4] Wray L A, Xu S Y, Xia Y, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J and Hasan M Z 2010 Nat. Phys. 6 855 [5] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [7] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001 [8] Kriener M, Segawa K, Ren Z, Sasaki S and Ando Y 2011 Phys. Rev. Lett. 106 127004 [9] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001 [10] Cava R J, Huiwen J, Fuccillo M K, Gibson Q D and Hor Y S 2013 J. Mater. Chem. C 1 3176 [11] LaForge A D, Frenzel A, Pursley B C, Lin T, Liu X, Shi J and Basov D N 2010 Phys. Rev. B 81 125120 [12] Degiorgi L, Felder E, Ott H R, Sarrao J L and Fisk Z 1997 Phys. Rev. Lett. 79 5134 [13] Li G, Hu W Z, Dong J, Qian D, Hsieh D, Hasan M Z, Morosan E, Cava R J and Wang N L 2007 Phys. Rev. Lett. 99 167002 [14] Watanabe S and Miyake K 2011 J. Phys.: Condens. Matter 23 094217 [15] Mallinson R B, Rayne J A and Ure R W 1968 Phys. Rev. 175 1049 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|