CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High-Performance InTiZnO Thin-Film Transistors Deposited by Magnetron Sputtering |
LIU Ao1,2, LIU Guo-Xia1,2, SHAN Fu-Kai1,2,3**, ZHU Hui-Hui1,2, B. C. Shin3**, W. J. Lee3, C. R. Cho4 |
1College of Physics Science, Qingdao University, Qingdao 266071 2Lab of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 3Electronic Ceramics Center, DongEui University, Busan 614714, South Korea 4College of Nanoscience and Nanotechnology, Pusan National University, Busan 609735, South Korea
|
|
Cite this article: |
LIU Ao, LIU Guo-Xia, SHAN Fu-Kai et al 2013 Chin. Phys. Lett. 30 127301 |
|
|
Abstract InTiZnO thin-film transistors (ITZO TFTs) with Al2O3 gate dielectrics are fabricated by magnetron sputtering at room temperature. The bottom-gate-type ITZO TFTs with amorphous Al2O3 gate dielectrics are operated in the enhancement mode and exhibit a mobility of 50.4 cm2/V?s, threshold voltage of 1.2 V, subthreshold swing of 94.5 mV/decade, and on/off-current ratio of 7×106. We believe that ITZO deposited at room temperature is an appropriate semiconductor material to produce high-mobility TFTs for developing flexible electronic devices.
|
|
Received: 15 April 2013
Published: 13 December 2013
|
|
PACS: |
73.61.Ng
|
(Insulators)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
78.40.Fy
|
(Semiconductors)
|
|
|
|
|
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [2] Hang H Q, Sun J, Liu F J, Zhao J W, Hu Z F, Li Z J, Zhang X Q and Wang Y S 2011 Chin. Phys. Lett. 28 128502 [3] Zhao Y H, Dong G F, Wang L D and Qiu Y 2007 Chin. Phys. Lett. 24 1664 [4] Jeong J K, Yang H W, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508 [5] Chong E, Jo K C and Lee S Y 2010 Appl. Phys. Lett. 96 152102 [6] Chong H Y, Han K W, No Y S and Kim T W 2011 Appl. Phys. Lett. 99 161908 [7] Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502 [8] Kim J H, Son D H, Park S N, Kim D H, Sung S J, Jung E A, Ha K R and Kang J K 2012 Curr. Appl. Phys. 12 e24 [9] Jeong W H, Kim G H, Shin H S, Ahn B D, Kim H J, Ryu M K, Park K B, Seon J B and Lee S Y 2010 Appl. Phys. Lett. 96 093503 [10] Tue P H, Miyasako T, Li J W, Tu T C, Inoue S, Tokumitsu E and Shimoda T 2013 IEEE Trans. Electron Devices 60 320 [11] Park J W, Lee D, Kwon H and Yoo S 2009 IEEE Electron Device Lett. 30 362 [12] Park J W and Yoo S 2008 IEEE Electron Device Lett. 29 724 [13] Jeong W H, Kim G H, Shin H S, Ahn B D, Kim H J, Ryu M K, Park K B, Seon J B and Lee S Y 2010 Appl. Phys. Lett. 96 093503 [14] Jun P, Sun Q J, Wang S D, Wang H Q and Ma W L 2013 Appl. Phys. Lett. 103 061603 [15] Wang X, Cai X K, Yuan Z J, Zhu X M, Qiu D J and Wu H Z 2011 Acta Phys. Sin. 60 037305 (in Chinese) [16] Adamopoulos G, Thomas S, Bradley D D C and Anthopoulos T D 2011 Appl. Phys. Lett. 98 123503 [17] Yao Q J, Li S X and Zhang Q 2011 Appl. Surf. Sci. 258 1460 [18] Furuta M, Kawaharamura T, Wang D P, Toda T and Hirao T 2012 IEEE Electron Device Lett. 33 851 [19] Chiu C J, Chang S P and Chang S J 2010 IEEE Electron Device Lett. 31 1245 [20] Kim J B, Hernandez C F, Postcavage W J, Zhang X H and Kippelen B 2009 Appl. Phys. Lett. 94 142107 [21] Lan L F and Peng J B 2011 IEEE Trans. Electron Devices 58 1245 [22] Kim S J, Kim D L, Rim Y S, Jeong W H, Kim D A, Yoon D H and Kim H J 2011 J. Cryst. Growth 326 163 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|