CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Upconversion Emission Properties of Erbium- and Ytterbium-Doped Potassium Lithium Tantalate Niobate Ceramics |
LI Lei1**, ZHOU Zhong-Xiang2, YANG Wen-Long2, LI Huan2, WU Ye2 |
1Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022
2Department of Physics, Harbin Institute of Technology, Harbin 150001 |
|
Cite this article: |
LI Lei, ZHOU Zhong-Xiang, YANG Wen-Long et al 2013 Chin. Phys. Lett. 30 127103 |
|
|
Abstract We investigate the luminescence properties of erbium-doped and erbium-ytterbium-codoped potassium lithium tantalate niobate ceramics prepared by the solid phasesyntheses method. The crystalline structure and surface morphology of these ceramics are tested by x-ray diffraction and scanning electron microscopy. The green, red, and near-infrared upconversion photoluminescence properties are analyzed by the steady-state spectra under 975 nm and 800 nm excitations. These ceramics arewell sintered and tetragonal tungsten type crystalline structure with the 4 mm point group and the P4bm space group. The Er3+ upconversion emission integrated intensities increase with theincrease in Er3+ ion concentration, while the green emissiondecreases with the increase in Yb3+ ion concentration under the 800 nm excitation. An effective energy back transfer process from the Er3+ 4S3/2 state to Yb3+ ground state plays an important role in enhancing the red emission and weakening the green emission.
|
|
Received: 18 June 2013
Published: 13 December 2013
|
|
|
|
|
|
[1] Heumann E, Bär S, Rademaker K, Huber G, Butterworth S, Diening A and Seelert W 2006 Appl. Phys. Lett. 88 061108
[2] Li X P, Chen B J, Shen R S, Zhang J S, Sun J S, Cheng L H, Zhong H Y, Tian Y, Fu S B and Du G T 2013 Chin. Phys. B 22 023202
[3] Sivakumar S, van Veggel F C J M and Raudsepp M 2005 J. Am. Chem. Soc. 127 12464
[4] Downing E, Hesselink L, Ralston J and Macfarlane R 1996 Science 273 1185
[5] Shalav A, Richards B S, Trupke T, Krämer K W and Güdel H U 2005 Appl. Phys. Lett. 86 013505
[6] Li B Z, Zheng Z Q, Yang J W, Li K W, Jiang H, Chen X S, Wang A T, Xie J P and Ming H 2005 Chin. Phys. Lett. 22 80
[7] Sun L, Yang C H, Li A H, Xu Y H and Zhao L C 2009 J. Appl. Phys. 105 043512
[8] Furukawa Y, Makio S, Miyai T and Sato M 1996 Appl. Phys. Lett. 68 744
[9] Li L, Zhou Z X, Tian H, Gong D W, Yang Z L and Yang Y Q 2010 J. Appl. Phys. 108 043520
[10] Neurgaonkar R R, Oliver J R, Cory W K, Cross L E and Viehland D 1994 Ferroelectrics 160 265
[11] Chen G Y, Zhang Y G, Somesfalean G, Zhang Z G, Sun Q and Wang F P 2006 Appl. Phys. Lett. 89 163105
[12] Pollnau M, Gamelin D R and Lüthi S R 2000 Phys. Rev. B 61 3337
[13] Chen G Y, Liu H C, Liang H J, Somesfalean G and Zhang Z G 2008 J. Phys. Chem. C 112 12030
[14] Chen G Y, Somesfalean G, Liu Y, Zhang Z G, Sun Q and Wang F P 2007 Phys. Rev. B 75 195204
[15] Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Krämer K W, Reinhard C and Güdel H U 2005 Opt. Mater. 27 1111
[16] Pires A M, Serra O A, Heer S and Güdel H U 2005 J. Appl. Phys. 98 063529 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|