Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 126502    DOI: 10.1088/0256-307X/30/12/126502
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Negative Thermal Expansion Material of ZrMgMo3O12
SONG Wen-Bo1, LIANG Er-Jun1**, LIU Xian-Sheng1, LI Zhi-Yuan1, YUAN Bao-He1,2, WANG Jun-Qiao1
1School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052
2North China University of Water Resources and Electric Power, Zhengzhou 450011
Cite this article:   
SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng et al  2013 Chin. Phys. Lett. 30 126502
Download: PDF(729KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A material with the formula ZrMgMo3O12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo3O12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna21(33) and exhibits negative thermal expansion in a large temperature range (αl=?3.8×10?6 K?1 from 300 K to 1000 K by x-ray diffraction and αl =?3.73×10?6 K?1 from 295 K to 775 K by dilatometer). ZrMgMo3O12 remains the orthorhombic structure without phase transition or decomposition at least from 123 K to 1200 K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications.
Received: 16 September 2013      Published: 13 December 2013
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  78.30.-j (Infrared and Raman spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/126502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/126502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Wen-Bo
LIANG Er-Jun
LIU Xian-Sheng
LI Zhi-Yuan
YUAN Bao-He
WANG Jun-Qiao
[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Liang E J 2010 Recent Patents on Materials Science 3 106
[3] Evans J S O, Hu Z, Jorgensen J D, Argyriou D N, Short S and Sleight A W 1997 Science 275 61
[4] Khosrovani N, Sleight A W and Vogt T 1997 J. Solid State Chem. 132 355
[5] Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 22 226502 (in Chinese)
[6] Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L and Yucker M G 2008 Science 319 794
[7] Hu P H, Cao Z M, Chen J, Deng J X, Sun C, Yu R B and Xing X R 2008 Mater. Lett. 62 4585
[8] Chen J, Fan L L, Ren Y, Pan Z, Deng J X, Yu R B and Xing X R 2013 Phys. Rev. Lett. 110 115901
[9] Sumithra S and Umarji A M 2004 Solid State Sci. 6 1313
[10] Ari M, Jardim P M, Marinkovic B A, Rizzo F and Ferreira F F 2008 J. Solid State Chem. 181 1472
[11] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[12] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T and Chen D F 2012 Chin. Phys. B 21 116102
[13] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese)
[14] Varg T, Wilkinson A P, Lind C, Bassett W A and Zha C S 2005 Phys. Rev. B 71 214106
[15] Varga T, Moats J L, Ushakov S V and Navrotsky A 2007 J. Mater. Res. 22 2512
[16] Tyagi A K, Achary S N and Mathews M D 2002 J. Alloys Compd. 339 207
[17] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[18] Li Q J, Yuan B H, Song W B, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501
[19] Varga T, Wilkinson A P, Jorgensen J D and Short S 2006 Solid State Sci. 8 289
[20] Paraguassu W, Maczka M, Filho A G S, Freire P T C, Filho J M and Melo F E A 2004 Phys. Rev. B 69 094111
[21] Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
[22] Suzuki T and Omote A 2006 J. Am. Ceram. Soc. 89 691
[23] Gindhart A M, Lind C and Green M 2008 J. Mater. Res. 23 210
[24] Baiz T I, Gindhart A M, Kraemer S K and Lind C 2008 J. Sol-Gel Sci. Technol. 47 128
[25] Omote A, Yotsuhashi S, Zenitani Y and Yamada Y 2011 J. Am. Ceram. Soc. 94 2285
[26] Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F and Ferreira F F 2008 Phys. Status Solidi B 245 2514
[27] Maczka M, Paraguassu W, Filho A G S, Freire P T C, Filho J M, Melo F E A and Hanuza J 2004 J. Solid State Chem. 177 2002
[28] Marinkovic B A, Jardim P M, Avillez R R and Rizzo F 2005 Solid State Sci. 7 1377
[29] Wang L, Yuan P F, Wang F, Sun Q, Liang E J and Jia Y 2013 Mater. Res. Bull. 48 2724
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 126502
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 126502
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 126502
[4] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 126502
[5] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 126502
[6] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 126502
[7] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 126502
[8] Xiang-Hong Ge, Yan-Chao Mao, Lin Li, Li-Ping Li, Na Yuan, Yong-Guang Cheng, Juan Guo, Ming-Ju Chao, Er-Jun Liang. Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2016, 33(04): 126502
[9] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 126502
[10] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 126502
[11] YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo, LIU Xian-Sheng, CHENG Yong-Guang, CHAO Ming-Ju, LIANG Er-Jun. High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7[J]. Chin. Phys. Lett., 2014, 31(07): 126502
[12] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 126502
[13] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 126502
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 126502
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 126502
Viewed
Full text


Abstract