Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 126201    DOI: 10.1088/0256-307X/30/12/126201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene
Bumned Soodchomshom**
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Cite this article:   
Bumned Soodchomshom 2013 Chin. Phys. Lett. 30 126201
Download: PDF(492KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The physical property of pseudo spin of electrons in graphene is investigated. In contrast to a recent description [Phys. Rev. Lett. 106 (2011) 116803], we show that pseudo spin in graphene is not completely a real angular momentum. The pseudo spin only in the direction perpendicular to the graphene sheet is real angular momentum while the pseudo spin parallel to the graphene plane is still not real angular momentum. Interestingly, it is also shown that the Newtonian-like force and pseudo spin torque of massive Dirac electrons in graphene under strain field mimic gravitomagnetic force and gravitomagnetic spin torque, respectively. This is due to the equivalence of pseudo spin and velocity operators of (2+1)-dimensional massive electrons in graphene, different from that in real (3+1)-dimensional Dirac fields. This work reveals the new physical property of graphene as a pseudo gravitomagnetic material.
Received: 01 August 2013      Published: 13 December 2013
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  81.05.ue (Graphene)  
  04.80.Cc (Experimental tests of gravitational theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/126201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/126201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bumned Soodchomshom
[1] Wallace P R 1947 Phys. Rev. 71 622
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[4] Katsnelson M I and Novoselov K S 2007 Solid State Commun. 143 3
[5] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[6] DiVincenzo D P and Male E J 1984 Phys. Rev. B 29 1685
[7] Gusynin V P, Sharapov S G and Carbotte J 2007 Int. J. Mod. Phys. B 21 4611
[8] Mecklenburg M and Regan B C 2011 Phys. Rev. Lett. 106 116803
[9] Cserti J and David G 2006 Phys. Rev. B 74 172305
[10] Strange P 1998 Relativistic Quantum Mechanics With Applications in Condensed Matter and Atomic Physics (Cambridge: Cambridge University Press)
[11] Beenakker W J 2008 Rev. Mod. Phys. 80 1337
[12] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and Brink J V D 2007 Phys. Rev. B 76 073103
[13] Soodchomshom B, Tang I M and Hoonsawat R 2013 Physica E 52 70
[14] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 329 544
[15] Bailey Q G 2010 Phys. Rev. D 82 065012
[16] Adler R J, Chen P 2010 Phys. Rev. D 82 025004
Related articles from Frontiers Journals
[1] Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng. Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium[J]. Chin. Phys. Lett., 2018, 35(11): 126201
[2] Han Zhou, Fu-Zeng Zhou, Yong-Qing Shen, Bin Liao, Jing-Jing Yu, Xu Zhang. Effect of Bias Voltage on Microstructure and Mechanical Properties of Nanocomposite ZrCN Films Deposited by Filtered Cathodic Vacuum Arc[J]. Chin. Phys. Lett., 2018, 35(6): 126201
[3] De-Min Zhao, Jian-Lin Liu. New Insights on the Deflection and Internal Forces of a Bending Nanobeam[J]. Chin. Phys. Lett., 2017, 34(9): 126201
[4] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 126201
[5] MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(07): 126201
[6] ZHOU Yu-Nong, HUANG Gan-Yun. Buckling of Elastic Thin Films on Compliant Substrates for Determination of Surface Parameters[J]. Chin. Phys. Lett., 2014, 31(11): 126201
[7] WANG Wei, QIAN Jian-Qiang, LI Ying-Zi, CHEN Zhu-Li. Dual-Frequency Atomic Force Microscopy Imaging Method and Experiment Based on Commercial AFM Platform[J]. Chin. Phys. Lett., 2013, 30(6): 126201
[8] YAN Ren-Jie, WU Jing-Hua, LI Cong, XU Gao-Jie, ZHOU Lu-Wei. Temperature Effects of Electrorheological Fluids Based on One-Dimensional Calcium and Titanium Precipitate[J]. Chin. Phys. Lett., 2013, 30(1): 126201
[9] LIU Jian-Lin**, XIA Re, ZHOU Yue-Ting . Stiction of a Nano-Beam with Surface Effect[J]. Chin. Phys. Lett., 2011, 28(11): 126201
[10] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 126201
[11] TAN Hao, WANG Hai-Ying**, XIA Meng-Fen, KE Fu-Jiu, BAI Yi-Long . Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single Crystal Copper with EAM Potential[J]. Chin. Phys. Lett., 2011, 28(4): 126201
[12] LI He, YANG Zhou, ZHANG Yi-Min, WEN Bang-Chun. Deflections of Nanowires with Consideration of Surface Effects[J]. Chin. Phys. Lett., 2010, 27(12): 126201
[13] HAN Mei, ZHANG Yong, ZHENG Hong-Bo. Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(3): 126201
[14] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 126201
[15] TANG Yi-Zhe, ZHENG Zhi-Jun, XIA Meng-Fen, BAI Yi-Long. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials[J]. Chin. Phys. Lett., 2009, 26(12): 126201
Viewed
Full text


Abstract