Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 124203    DOI: 10.1088/0256-307X/30/12/124203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Robust Generation of Qutrit-Qutrit Entanglement through a Single Resonant Interaction Assisted by Moderate Driving
WU Huai-Zhi, YANG Zhen-Biao**
Lab of Quantum Optics, Department of Physics, Fuzhou University, Fuzhou 350002
Cite this article:   
WU Huai-Zhi, YANG Zhen-Biao 2013 Chin. Phys. Lett. 30 124203
Download: PDF(802KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose to engineer qutrit-qutrit entanglement through resonant atom-cavity interaction assisted by moderate laser driving, study two parameter regimes, respectively, of asymmetric atom-laser coupling and of asymmetric atom-cavity coupling, and find that both the coupling regimes possess the advantage of short operation time, compared with the previous ones achieved by dispersive interaction, adiabatic passage, and even quantum Zeno dynamics. We check numerically the influences of the parameter fluctuations and dissipation on the scheme and show it to be robust. The scheme can also be generalized to other physical systems such as the ion trap.
Received: 12 September 2013      Published: 13 December 2013
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/124203       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/124203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Huai-Zhi
YANG Zhen-Biao
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bell J S 1965 Phys. (Long Island City N. Y.) 1 195
[3] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[4] Keyl M 2002 Phys. Rep. 369 431
[5] Kaszlikowski D, Gnaciński P, ?ukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[6] Cabello A 2002 Phys. Rev. A 65 032108
[7] Cerf N J, Massar S and Pironio S 2002 Phys. Rev. Lett. 89 080402
[8] Dada A C, Leach J, Buller G S, Padgett M J and Andersson E 2011 Nat. Phys. 7 677
[9] Haroche S 2013 Rev. Mod. Phys. 85 1083
[10] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[11] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[12] Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 76 1800
[13] Zou X, Pahlke K and Mathis W 2003 Phys. Rev. A 67 044301
[14] Lin X M, Zhou Z W, Wu Y C, Wang C Z and Guo G C 2005 Chin. Phys. Lett. 22 1318
[15] Yang Z B, Wu H Z and Zheng S B 2010 Chin. Phys. B 19 094205
[16] Chen L B, Shi P, Gu Y J, Xie L and Ma L Z 2011 Opt. Commun. 284 5020
[17] Zheng S B 2007 Phys. Lett. A 370 110
[18] Li W A and Huang G Y 2011 Phys. Rev. A 83 022322
[19] Monroe C 2002 Nature 416 238
[20] Mücke M, Bochmann J, Hahn C, Neuzner A, N?lleke C, Reiserer A, Rempe G and Ritter S 2013 Phys. Rev. A 87 063805
[21] Wu Y 1996 Phys. Rev. A 54 1586
[22] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[23] Reiserer A, N?lleke C, Ritter S and Rempe G 2013 Phys. Rev. Lett. 110 223003
[24] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 J. Phys. B 38 S551
[25] Wilk T, Webster S C, Kuhn A and Rempe G 2007 Science 317 488
[26] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
[27] Chen J L and Deng D L 2009 Phys. Rev. A 79 012111
[28] Chen J L, Deng D L, Su H Y, Wu C and Oh C H 2011 Phys. Rev. A 83 022316
[29] Chen J L, Gisin N, Kaszlikowski D, Kwek L C, Oh C H and ?ukowski M 2004 Phys. Rev. Lett. 92 250404
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 124203
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 124203
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 124203
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 124203
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 124203
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 124203
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 124203
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 124203
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 124203
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 124203
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 124203
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 124203
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 124203
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 124203
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 124203
Viewed
Full text


Abstract