Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 124202    DOI: 10.1088/0256-307X/30/12/124202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Real-Time Liquid Evaporation Rate Measurement Based on a Microchip Laser Feedback Interferometer
TAN Yi-Dong1, ZHANG Song1, REN Zhou1, ZHANG Yong-Qin2, ZHANG Shu-Lian1**
1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
2School of Mechanical Engineering, Nantong University, Nantong 226019
Cite this article:   
TAN Yi-Dong, ZHANG Song, REN Zhou et al  2013 Chin. Phys. Lett. 30 124202
Download: PDF(556KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a novel scheme to realize the direct real-time measurement of liquid evaporation rate and nanometer order liquid level monitoring. It is based on the phase measurement technology of Nd:YAG microchip laser frequency-shifted feedback, which not only has a high resolution and precision but also ultrahigh sensitivity. The evaporation rates of four different transparent liquids and hot water are measured. Experimental results indicate the ease and convenience of measuring and present promising application prospects in non-cooperative target measurement.
Received: 08 July 2013      Published: 13 December 2013
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  07.60.Ly (Interferometers)  
  42.55.Xi (Diode-pumped lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/124202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/124202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Yi-Dong
ZHANG Song
REN Zhou
ZHANG Yong-Qin
ZHANG Shu-Lian
[1] Ilev I K and Waynant R W 1999 Rev. Sci. Instrum. 70 2551
[2] Chakravarthy S, Sharma R and Kasturi R 2002 IEEE Trans. Instrum. Meas. 51 353
[3] Sakharov V E, Kuznetsov S A, Zaitsev B D, Kuznetsova I E and Joshi S G 2003 Ultrasonics 41 319
[4] Casanella R, Casas O and Pallas-Areny R 2007 Meas. Sci. Technol. 18 1859
[5] Reverter F, Li X and Meijer G 2007 Sens. Actuators A 138 1
[6] Lu T, Li Z J, Xia D Q, He K T and Zhang G Y 2009 Rev. Sci. Instrum. 80 033104
[7] Wan X J, Li D and Zhang S L 2007 Opt. Lett. 32 367
[8] Ren Z, Li D, Wan X J, Li D and Zhang S L 2008 Laser Phys. 18 939
[9] Lacot E, Jacquin O, Roussely G, Hugon O and de Chatellus H G 2010 J. Opt. Soc. Am. A 27 2450
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 124202
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 124202
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 124202
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 124202
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 124202
[6] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 124202
[7] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 124202
[8] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 124202
[9] YAN Lu-Lu, ZHANG Yan-Yan, ZHANG Long, FAN Song-Tao, ZHANG Xiao-Fei, GUO Wen-Ge, ZHANG Shou-Gang, JIANG Hai-Feng. Attosecond-Resolution Er:Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2015, 32(10): 124202
[10] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 124202
[11] LI Ye, LIN Yi-Ge, WANG Qiang, WANG Shao-Kai, ZHAO Yang, MENG Fei, LIN Bai-Ke, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chin. Phys. Lett., 2014, 31(2): 124202
[12] HOU Lei, HAN Hai-Nian, ZHANG Jin-Wei, LI De-Hua, WEI Zhi-Yi. A Wide Spaced Femtosecond Ti:Sapphire Frequency Comb at 15 GHz by a Fabry–Pérot Filter Cavity[J]. Chin. Phys. Lett., 2013, 30(10): 124202
[13] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 124202
[14] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 124202
[15] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 124202
Viewed
Full text


Abstract