Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 120501    DOI: 10.1088/0256-307X/30/12/120501
GENERAL |
A Parameter-Space Analysis of the Rikitake System
Rodrigo A. da Silva, Paulo C. Rech**
Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil
Cite this article:   
Rodrigo A. da Silva, Paulo C. Rech 2013 Chin. Phys. Lett. 30 120501
Download: PDF(2067KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate analytically and numerically the dynamics of the Rikitake system. The Routh–Hurwitz criterion is used to study the stability of the equilibrium points of the differential equation system model, as functions of two parameters. The dynamics of the model are numerically studied using diagrams that associate colors to the largest Lyapunov exponent value, in two-dimensional parameter spaces. Additionally, phase-space plots and bifurcation diagrams are used to distinguish periodic and chaotic attractors.
Received: 16 August 2013      Published: 13 December 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/120501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/120501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rodrigo A. da Silva
Paulo C. Rech
[1] Glatzmaiers G A and Roberts P H 1995 Nature 377 203
[2] Rikitake T 1958 Proc. Cambridge Philos. Soc. 54 89
[3] Bullard E 1955 Proc. Cambridge Philos. Soc. 51 744
[4] Hardy Y and Steeb W H 1999 Int. J. Theor. Phys. 38 2413
[5] Llibre J and Messias M 2009 Physica D 238 241
[6] Braga D C, Dias F S and Mello L F 2010 Phys. Lett. A 374 4316
[7] Aguilar-Iba?ez C, Martinez-Guerra R, Aguilar-López R and Mata-Machuca J L 2010 Phys. Lett. A 374 3625
[8] Tudoran R M and G?rban A 2010 Nonlinear Anal. Real World Appl. 11 2888
[9] Tudoran R M 2011 Nonlinear Anal. Real World Appl. 12 2505
[10] Albuquerque H A, Rubinger R M and Rech P C 2008 Phys. Lett. A 372 4793
[11] Cardoso J C D, Albuquerque H A and Rubinger R M 2009 Phys. Lett. A 373 2050
[12] Stegemann C, Albuquerque H A and Rech P C 2010 Chaos 20 023103
[13] Mathias A C and Rech P C 2012 Chaos 22 043147
[14] Bonatto C, Gallas J A C and Ueda Y 2008 Phys. Rev. E 77 026217
[15] Medeiros E S, de Souza S L T, Medrano-T R O and Caldas I L 2010 Phys. Lett. A 374 2628
[16] Freire J G, Bonatto C, DaCamara C C and Gallas J A C 2008 Chaos 18 033121
[17] Testoni G E and Rech P C 2010 Int. J. Mod. Phys. C 21 973
[18] Slipantschuk J, Ullner E, Baptista M S, Zeineddine M and Thiel M 2010 Chaos 20 045117
[19] Nascimento M A, Gallas J A C and Varela H 2011 Phys. Chem. Chem. Phys. 13 441
[20] Kovanis V, Gavrielides A and Gallas J A C 2010 Eur. Phys. J. D 58 181
[21] Krüger T S and Rech P C 2012 Eur. Phys. J. D 66 12
[22] Linaro D, Poggi T and Storace M 2010 Phys. Lett. A 374 4589
[23] Rech P C 2011 Phys. Lett. A 375 1461
[24] Mathias A C and Rech P C 2012 Neural Networks 34 42
[25] Rech P C 2012 Chin. Phys. Lett. 29 060506
[26] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer)
[27] Ito K 1980 Earth Planet. Sci. Lett. 51 451
[28] Lorenz E N 1963 J. Atmos. Sci. 20 130
[29] Boccaletti S, Kurths J, Osipov G, Valadares D L and Zhou C S 2002 Phys. Rep. 366 1
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 120501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 120501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 120501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 120501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 120501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 120501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 120501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 120501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 120501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 120501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 120501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 120501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 120501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 120501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 120501
Viewed
Full text


Abstract