Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 120302    DOI: 10.1088/0256-307X/30/12/120302
GENERAL |
Asymmetric Model of the Quantum Stackelberg Duopoly
WANG Xia1*, LIU Di2, ZHANG Jun-Pei3
1Wenhua College, Huazhong University of Science and Technology, Wuhan 430074
2School of Foreign Languages, Wuhan Textile University, Wuhan 430077
3Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
WANG Xia, LIU Di, ZHANG Jun-Pei 2013 Chin. Phys. Lett. 30 120302
Download: PDF(2474KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A more efficient model of the quantum Stackelberg duopoly is proposed by using the asymmetric quantization scheme of Qin et al. In this model, two entanglement factors α (α=√γ12) and γ (γ=√γ1γ2) are introduced, which greatly expands the functions of the previously reported symmetric one. By choosing proper values of α and γ, one can better manage the market, such as suppressing the first-mover advantage and enhancing the second-mover profit to avoid abuse of oligopolistic competition, and optimizing the total quantity of the products, so to overcome the deficiencies of "first mover always wins" and "positive quantum entanglement always reduces the total quantity" in the symmetric model. The proposed model here is believed to be a good tool for the government and the department to improve the economic efficiency and develop the market.
Received: 26 July 2013      Published: 13 December 2013
PACS:  03.67.-a (Quantum information)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/120302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/120302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xia
LIU Di
ZHANG Jun-Pei
[1] Meyer D A 1999 Phys. Rev. Lett. 82 1052
[2] Eisert J et al 1999 Phys. Rev. Lett. 83 3077
[3] Khan S et al 2010 Chin. Phys. Lett. 27 080302
[4] Li S B 2011 J. Phys. A: Math. Theor. 44 295302
[5] Sekiguchi Y et al 2010 J. Phys. A: Math. Theor. 43 145303
[6] Zhu X and Kuang L M 2007 J. Phys. A: Math. Theor. 40 7729
[7] Zhu X and Kuang L M 2008 Commun. Theor. Phys. 49 111
[8] Khan S et al 2010 J. Phys. A: Math. Theor. 43 375301
[9] Khan S and Khan M K 2011 Chin. Phys. Lett. 28 070202
[10] Guo H, Zhang J and Koehler G J 2008 Decis. Support Syst. 46 318
[11] Du J F et al 2005 J. Phys. A: Math. Theor. 38 1559
[12] Khan S and Khan M K 2011 J. Phys. A: Math. Theor. 44 355302
[13] Khan S and Khan M K 2013 Quantum Inf. Process. 12 1351
[14] Li H et al 2002 Phys. Lett. A 306 73
[15] Lo C F and Kiang D 2004 Phys. Lett. A 321 94
[16] Du J F et al 2003 Phys. Rev. E 68 016124
[17] Qin G et al 2005 J. Phys. A: Math. Theor. 38 4247
[18] Chen X et al 2005 Chin. Phys. Lett. 22 1033
[19] Lo C F and Kiang D 2003 Phys. Lett. A 318 333
[20] Lo C F and Kiang D 2005 Phys. Lett. A 346 65
[21] Wang X et al 2007 Chin. Phys. Lett. 24 3040
[22] Wang X and Hu C Z 2012 Chin. Phys. Lett. 29 120303
[23] Lo C F and Kiang D 2003 Europhys. Lett. 64 592
[24] Benjamin S C and Hayden P M 2001 Phys. Rev. A 64 030301
[25] Goudarzi H and Beyrami S 2012 J. Phys. A: Math. Theor. 45 225301
[26] Qin G et al 2005 Phys. Lett. A 340 78
[27] Li Y et al 2006 Phys. Lett. A 355 447
[28] Du J F et al 2002 Phys. Rev. Lett. 88 137902
[29] H S Bierman et al 1998 Game Theory with Economic Applications 2nd edn (Reading, MA: Sddison-Wesley)
Gravelle H and Rees R 1992 Microecnomics 2nd end (Harlow: Longman)
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 120302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 120302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 120302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 120302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 120302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 120302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 120302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 120302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 120302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 120302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 120302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 120302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 120302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 120302
Viewed
Full text


Abstract