Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 120301    DOI: 10.1088/0256-307X/30/12/120301
GENERAL |
Thermal Entanglement in a Two-Qubit Ising Chain Subjected to Dzyaloshinsky–Moriya Interaction
B. G. Divyamani1,2, Sudha1,3**
1Department of Physics, Kuvempu University, Shankaraghatta, Shimoga-577 451, India
2Tunga Mahavidyalaya, Tirthahalli, Shimoga-577 451, India
3Inspire Institute Inc., Alexandria, Virginia, 22303, USA
Cite this article:   
B. G. Divyamani, Sudha 2013 Chin. Phys. Lett. 30 120301
Download: PDF(479KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal entanglement of a two-qubit Ising chain subjected to an external magnetic field and Dzyaloshinsky–Moriya (DM) interaction is examined. The effect of magnetic field, strength of DM interaction and temperature are analyzed by adopting negativity of partial transpose as the measure of entanglement. It is shown that when the DM interaction along the Ising axis is considerable, thermal entanglement can be sustained for a higher temperature. The usefulness of longitudinal DM interaction over the one that is perpendicular to the Ising axis, in the manipulation and control of entanglement at a feasible temperature, is illustrated.
Received: 08 August 2013      Published: 13 December 2013
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  05.50.+q (Lattice theory and statistics)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/120301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
B. G. Divyamani
Sudha
[1] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[2] Wang X 2001 Phys. Rev. A 64 012313
[3] Wang X 2002 Phys. Rev. A 66 034302
[4] Kamata G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[5] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[6] Wang X 2001 Phys. Lett. A 281 101
[7] Gunlycke D, Kendon V M, Vedral V and Bose S 2001 Phys. Rev. A 64 042302
[8] Stelmachovic P and Buzek V 2004 Phys. Rev. A 70 032313
[9] Akyüz C and Aydmer E 2008 Chin. Phys. Lett. 25 1557
[10] Akyüz C, Aydmer E and Müstecaplio?lu ? E 2008 Opt. Commun. 281 5271
[11] Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
[12] Ma X S 2008 Opt. Commun. 281 484
[13] Meng Q et al 2008 Chin. Phys. B 17 2800
[14] Zhang G F 2007 Phys. Rev. A 75 034304
[15] Zhang Y H 2013 Int. J. Theor. Phys. 52 302
[16] Kane B E 1998 Nature 393 133
[17] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[18] Moriya T 1960 Phys. Rev. Lett. 4 228
Moriya T 1960 Phys. Rev. 117 635
Moriya T 1960 Phys. Rev. 120 91
[19] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[20] Peres A 1996 Phys. Rev. Lett. 77 1413
[21] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 120301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 120301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 120301
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 120301
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 120301
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 120301
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 120301
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 120301
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 120301
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 120301
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 120301
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 120301
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 120301
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 120301
Viewed
Full text


Abstract