Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 120201    DOI: 10.1088/0256-307X/30/12/120201
GENERAL |
Ohmic Losses in Coaxial Cavity Gyrotron with Outer Corrugation
HOU Shen-Yong1,2**, YU Sheng1, LI Hong-Fu1
1Terahertz Science and Technology Research Center, University of Electronics Science and Technology of China, Chengdu 610054
2Department of Mathematics and Physics, Yangtze Normal University, Chongqing 408001
Cite this article:   
HOU Shen-Yong, YU Sheng, LI Hong-Fu 2013 Chin. Phys. Lett. 30 120201
Download: PDF(642KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ohmic losses of a coaxial cavity gyrotron with outer corrugation are investigated. The results show that the averaged ohmic loss densities of the inner and outer conductors have similar changes along with the axial direction of the gyrotron; whereas averaged ohmic loss densities of the outer conductor are more than the inner conductor; the outer slot depth and width cause greatly the averaged ohmic loss densities of the corrugation bottom and the corrugation period of outer conductor, and averaged densities of ohmic losses on the inner conductor are almost unaffected.
Received: 29 August 2013      Published: 13 December 2013
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  84.40.Ik (Masers; gyrotrons (cyclotron-resonance masers))  
  87.55.kd (Algorithms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/120201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Shen-Yong
YU Sheng
LI Hong-Fu
[1] Rzesnicki T, Piosczyk B and Kern S 2010 IEEE Trans. Plasma Sci. 38 1141
[2] Iatrou C T 1996 IEEE Trans. Plasma Sci. 24 596
[3] Grudiev A, Raguin J Y and Schunemann K 2003 Int. J. Infrared Millimeter Waves 24 173
[4] Singh K, Jain P K and Basu B N 2005 IEEE Trans. Plasma Sci. 33 1024
[5] Zaginaylov G I and Mitina I V 2011 Prog. Electromagnetics Res. B 31 339
[6] Iatrou C T, Kern S and Pavelyev A B 1996 IEEE Trans. Microwave Theory Tech. 44 56
[7] Barroso J J, Correa A R and Castro P J 1998 IEEE Trans. Microwave Theory Tech. 46 1221
[8] Dumbrajs O and Zaginaylov G I 2004 IEEE Trans. Plasma Sci. 32 861
[9] Ioannidis Z C, Dumbrajs O and Tigelis I G 2006 IEEE Trans. Plasma Sci. 34 1516
[10] Hou S Y, Yu S and Li H F 2013 Phys. Plasmas 20 052104
Related articles from Frontiers Journals
[1] Long Xiong, Wei-Feng Zhuang, and Ming Gong. Dynamics of Quantum State and Effective Hamiltonian with Vector Differential Form of Motion Method[J]. Chin. Phys. Lett., 2022, 39(7): 120201
[2] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 120201
[3] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 120201
[4] CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong. Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2014, 31(04): 120201
[5] WANG Xing, MA Tian-Bao, NING Jian-Guo. A Pseudo Arc-Length Method for Numerical Simulation of Shock Waves[J]. Chin. Phys. Lett., 2014, 31(03): 120201
[6] F. Khaksar Haghani, S. Karimi Vanani, J. Sedighi Hafshejani. Numerical Computation of the Tau Approximation for the Delayed Burgers Equation[J]. Chin. Phys. Lett., 2013, 30(2): 120201
[7] ZOU Li, ZOU Dong-Yang, WANG Zhen, ZONG Zhi. Finding Discontinuous Solutions to the Differential-Difference Equations by the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2013, 30(2): 120201
[8] A. Yildirim, A. Gökdoğan, M. Merdan, V. Lakshminarayanan. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens[J]. Chin. Phys. Lett., 2012, 29(7): 120201
[9] PAN Feng, XIE Ming-Xia, SHI Chang-Liang, J. P. DRAAYER. Quasi-exactly Solvable Cases of the N-Dimensional Symmetric Quartic Anharmonic Oscillator[J]. Chin. Phys. Lett., 2012, 29(7): 120201
[10] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 120201
[11] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 120201
[12] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 120201
[13] Junaid Ali Khan*, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations[J]. Chin. Phys. Lett., 2011, 28(2): 120201
[14] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 120201
[15] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 120201
Viewed
Full text


Abstract