Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 114207    DOI: 10.1088/0256-307X/30/11/114207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Quantum Random Number Generation Based on Quantum Phase Noise
TANG Guang-Zhao1, JIANG Mu-Sheng1, SUN Shi-Hai1, MA Xiang-Chun1, LI Chun-Yan1, LIANG Lin-Mei1,2**
1Department of Physics, National University of Defense Technology, Changsha 410073
2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
Cite this article:   
TANG Guang-Zhao, JIANG Mu-Sheng, SUN Shi-Hai et al  2013 Chin. Phys. Lett. 30 114207
Download: PDF(577KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally demonstrate a kind of high-quantum correlated, practical quantum random generation based on the quantum phase noise of a laser, which uniformly distributes in the range of (?π,π] by driving the laser with a stream of narrow electrical pulses. We propose a working mode to further suppress the impact of phase drift after we use the passive measures (thermal and mechanical isolation) to slow it down. Moreover, a new method which ensures random numbers to be true representations of quantum characteristics is presented to quantify the quantum randomness. This scheme has an inherent advantage for multiplex generation.
Received: 30 May 2013      Published: 30 November 2013
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.67.-a (Quantum information)  
  42.55.Ah (General laser theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/114207       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/114207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Guang-Zhao
JIANG Mu-Sheng
SUN Shi-Hai
MA Xiang-Chun
LI Chun-Yan
LIANG Lin-Mei
[1] Lohr S L 1999 Sampling: Design and Analysis (Florence: Duxbury)
[2] Schneier B and Sutherland P 1984 Quantum Cryptography: Public Key Distribution Coin Tossing (Bangalore, India 10–12 December 1984) pp 175–179
[3] Uchida A et al 2008 Nat. Photon. 2 728
[4] Kanter I et al 2010 Nat. Photon. 4 58
[5] Jennewein T et al 2000 Rev. Sci. Instrum. 71 1675
[6] Kwon O et al 2009 Appl. Opt. 48 1774
[7] Dynes J et al 2008 Appl. Phys. Lett. 93 031109
[8] Gu Y J 2001 Chin. Phys. B 10 490
[9] Fürst M and Weier H 2010 Opt. Express 18 13029
[10] Symul T et al 2011 Appl. Phys. Lett. 98 231103
[11] Zhang H Y et al 1995 Chin. Phys. B 4 169
[12] Wahl M et al 2011 Appl. Phys. Lett. 98 171105
[13] Uchida A et al 2010 Nat. Photon. 4 711
[14] Shen Y et al 2010 Phys. Rev. A 81 063814
[15] Williams C R S et al 2010 it Opt. Express 18 23584
[16] Jofre M et al 2011 Opt. Express 19 20665
[17] Xu F H et al 2012 Opt. Express 20 12366
[18] Guo H et al 2010 Phys. Rev. E 81 051137
[19] Xie C W and Mei D C 2003 Chin. Phys. Lett. 20 1681
[20] Wang J et al 2004 Chin. Phys. Lett. 21 246
[21] Guo F et al 2010 Chin. Phys. Lett. 27 090506
[22] Wang Z L and Chen D Y 2009 Acta Phys. Sin. 58 1403 (in Chinese)
[23] Yariv A and Yeh P 2007 Photonics: Optical Electronics in Modern Communications 6th edn (Oxford: Oxford University)
[24] Chen W et al 2008 Chin. Sci. Bull. 53 1310
[25] Guo B H et al 2007 Acta Phys. Sin. 56 3695 (in Chinese)
[26] Marsaglia G 1995 DIEHARD: A Battery of Tests of Randomness [http://www.sta.fsu.edu/pub/diehard/]
[27] Walker J [http://www.fourmilab.ch/random/]
[28] Trevisan L 2001 J. ACM 48 860
Related articles from Frontiers Journals
[1] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 114207
[2] Hai-Feng Dong, Xiao-Fei Wang, Ji-Min Li, Jing-Ling Chen, Yuan Ren. An Atomic Magnetometer with Spin-Projection Noise Proportional to $\sqrt{{T_2}}$[J]. Chin. Phys. Lett., 2019, 36(2): 114207
[3] WEN Feng, ZHANG Xun, XUE Xin-Xin, SUN Jia, SONG Jian-Ping, ZHANG Yan-Peng. Fourth-Order Spatial Correlation of Thermal Light[J]. Chin. Phys. Lett., 2014, 31(11): 114207
[4] XU Zhen-Yu, ZHU Shi-Qun. Quantum Speed Limit of a Photon under Non-Markovian Dynamics[J]. Chin. Phys. Lett., 2014, 31(2): 114207
[5] XIAO Xing, LI Yan-Ling. Stabilizing Geometric Phase by Detuning in a Non-Markovian Dissipative Environment[J]. Chin. Phys. Lett., 2014, 31(1): 114207
[6] CHEN Yan, SHEN Yong, TANG Guang-Zhao, ZOU Hong-Xin. Impact of Cross-Phase Modulation Induced by Classical Channels on the CV-QKD in a Hybrid System[J]. Chin. Phys. Lett., 2013, 30(11): 114207
[7] ZHANG Yu-Yu, CHEN Qing-Hu, ZHU Shi-Yao. Vacuum Rabi Splitting and Dynamics of the Jaynes–Cummings Model for Arbitrary Coupling[J]. Chin. Phys. Lett., 2013, 30(11): 114207
[8] CHEN Yao, WANG Fei, SHI Wen-Xing, XIAO Ming. Decay-Induced Interference Effect on Photon Correlation in a Nearly Equispaced Three-Level Ladder Atom[J]. Chin. Phys. Lett., 2012, 29(11): 114207
[9] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 114207
[10] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 114207
[11] DING Bang-Fu**, WANG Xiao-Yun**, LIU Jing-Feng, YAN Lin, ZHAO He-Ping . Quantum Discord Dynamics in Two Different Non-Markovian Reservoirs[J]. Chin. Phys. Lett., 2011, 28(10): 114207
[12] LIU Kui, CUI Shu-Zhen, ZHANG Hai-Long, ZHANG Jun-Xiang, GAO Jiang-Rui** . Noise Suppression of a Single Frequency Fiber Laser[J]. Chin. Phys. Lett., 2011, 28(7): 114207
[13] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 114207
[14] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 114207
[15] ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing[J]. Chin. Phys. Lett., 2010, 27(9): 114207
Viewed
Full text


Abstract