Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 111201    DOI: 10.1088/0256-307X/30/11/111201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Electron-Positron Pair Creation from Vacuum by using Negative Frequency Chirping Laser Pulses
SANG Hai-Bo, JIANG Min, XIE Bai-Song**
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
Cite this article:   
SANG Hai-Bo, JIANG Min, XIE Bai-Song 2013 Chin. Phys. Lett. 30 111201
Download: PDF(544KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influences of laser pulses with negative frequency chirp and different pulse cycles on pair production are studied. By solving the quantum Vlasov equation, the momentum distribution and the number density of the created pairs are obtained numerically. It is found that the chirp rate can enhance the pair production rate in both supercycle and subcycle pulses. Moreover, there is an optimal cycle parameter corresponding to the maximum number density under the same chirp rate. The pair number density is sensitive to the cycle parameter when it is less than the optimal one. Compared to the positive frequency chirp, in the case of the negative frequency chirp, the optimal cycle parameter is increased.
Received: 02 July 2013      Published: 30 November 2013
PACS:  12.20.Ds (Specific calculations)  
  11.15.Tk (Other nonperturbative techniques)  
  42.55.Vc (X- and γ-ray lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/111201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/111201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SANG Hai-Bo
JIANG Min
XIE Bai-Song
[1] Schwinger J S 1951 Phys. Rev. 82 664
[2] Popov V S 1972 Sov. Phys. JETP 34 709
[3] Bulanov S S 2004 Phys. Rev. E 69 036408
[4] Dunne G V and Wang Q H 2006 Phys. Rev. D 74 065015
[5] Schutzhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404
[6] Xie B S et al 2012 Chin. Phys. Lett. 29 021102
[7] Alkofer R et al 2001 Phys. Rev. Lett. 87 193902
[8] Roberts C D, Schmidt S M and Vinnik D V 2002 Phys. Rev. Lett. 89 153901
[9] Hebenstreit F et al 2009 Phys. Rev. Lett. 102 150404
[10] Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
[11] Monin A and Voloshin M B 2010 Phys. Rev. D 81 025001
[12] Bulanov S S et al 2010 Phys. Rev. Lett. 105 220407
[13] Piazza A D et al 2009 Phys. Rev. Lett. 103 170403
[14] Nuriman A et al 2012 Phys. Lett. B 717 465
[15] Dumlu C K 2010 Phys. Rev. D 82 045007
[16] Jiang M et al 2013 Chin. Phys. B (to be published)
[17] Li Z L, Sang H B and Xie B S 2013 Chin. Phys. Lett. 30 071201
Related articles from Frontiers Journals
[1] Gianfranco Spavieri, George T. Gillies, Miguel Rodriguez, and Maribel Perez. Effective Interaction Force between an Electric Charge and a Magnetic Dipole and Locality (or Nonlocality) in Quantum Effects of the Aharonov–Bohm Type[J]. Chin. Phys. Lett., 2021, 38(3): 111201
[2] Kai Ma, Jian-Hua Wang, Huan-Xiong Yang, Hua-Wei Fan. Hall Conductivity in the Cosmic Defect and Dislocation Spacetime[J]. Chin. Phys. Lett., 2016, 33(10): 111201
[3] S. H. Kim. Electron–Cyclotron Laser Using Free-Electron Two-Quantum Stark Radiation in a Strong Uniform Axial Magnetic Field and an Alternating Axial Electric Field in a Voltage-Supplied Pill-Box Cavity[J]. Chin. Phys. Lett., 2016, 33(03): 111201
[4] MEI Xue-Song, ZHAO Shu-Min, QIAO Hao-Xue. Calculation of Higher-Order Foldy-Wouthuysen Transformation Hamiltonian[J]. Chin. Phys. Lett., 2014, 31(06): 111201
[5] LI Zi-Liang, SANG Hai-Bo, XIE Bai-Song. Enhanced Electron-Positron Pair Production of a Vacuum in a Strong Laser Pulse Field by Frequency Variation[J]. Chin. Phys. Lett., 2013, 30(7): 111201
[6] ZHANG Jia-Lin, and YU Hong-Wei. Casimir–Polder-Like Force for an Atom in Hartle–Hawking Vacuum outside a Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2012, 29(8): 111201
[7] XIE Bai-Song, Mohamedsedik Melike, Dulat Sayipjamal. Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field[J]. Chin. Phys. Lett., 2012, 29(2): 111201
[8] DUAN Hai-Bin, XING Zhi-Hui. Improved Quantum Evolutionary Computation Based on Particle SwarmOptimization and Two-Crossovers[J]. Chin. Phys. Lett., 2009, 26(12): 111201
[9] ZHOU Hai-Qing. Two-Photon-Exchange Correction to Elastic ep Scattering in the Forward Angle Limit[J]. Chin. Phys. Lett., 2009, 26(6): 111201
[10] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 111201
[11] ZHAO Yan, SHAO Cheng-Gang, LUO Jun. Finite Temperature Casimir Effect for Corrugated Plates[J]. Chin. Phys. Lett., 2006, 23(11): 111201
[12] JIANG Min, FANG Zhen-Yun, SANG Wen-Long, GAO Fei. Accurate Calculation of the Differential Cross Section of Bhabha Scattering with Photon Chain Loops Contribution in QED[J]. Chin. Phys. Lett., 2006, 23(10): 111201
[13] WANG Jing, ZHANG Xiang-Dong, PEI Shou-Yong, LIU Da-He. Temperature Tuning of Casimir Effect[J]. Chin. Phys. Lett., 2006, 23(9): 111201
[14] S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics[J]. Chin. Phys. Lett., 2006, 23(6): 111201
[15] ZHANG Jia-Lin, YU Hong-Wei. Lorentz Invariance and Brownian Motion of Test Particles with Constant Classical Velocity in Electromagnetic Vacuum[J]. Chin. Phys. Lett., 2005, 22(12): 111201
Viewed
Full text


Abstract