Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110202    DOI: 10.1088/0256-307X/30/11/110202
GENERAL |
CTE Solvability and Exact Solution to the Broer-Kaup System
CHEN Chun-Li1**, LOU Sen-Yue2
1Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240
2Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
CHEN Chun-Li, LOU Sen-Yue 2013 Chin. Phys. Lett. 30 110202
Download: PDF(577KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A consistent tanh expansion (CTE) is used to solve the Broer–Kaup (BK) system. It is proved that the BK system is CTE solvable. Some exact interaction solutions among different nonlinear excitations such as solitons, rational waves, periodic waves, error function waves and any Burgers waves are explicitly given.
Received: 02 September 2013      Published: 30 November 2013
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Chun-Li
LOU Sen-Yue
[1] Gu C H Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems Theory and Their Applications to Geometry: Mathematical Physics Studies vol 26 (Springer, Dordrecht)
[2] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
Lou S Y and Hu X B 1997 J. Phys. A 30 L95
[3] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[4] Rogers C and Schief W K 2002 B?cklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press)
[5] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[6] Gao X N Lou S Y and Tang X Y 2013 J. High Energy Phys. 1305 029
[7] Lou S Y 2013 arXiv:1308.1140 [nlin.SI]
[8] Kadomtsev B B and Petviashvili V I 1970 Dokl. Akad. Nauk SSSR 192 753
[9] Cheng X P Chen C L and Lou S Y 2012 arXiv:1208.3259 [nlin.SI]
[10] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
Kivshar Yu S and Luther-Davies B 1998 Phys. Rep. 298 81
[11] Lou S Y, Cheng X P, Chen C L and Tang X Y 2012 arXiv:1208.5314[nlin.SI]
[12] Lou S Y 2013 arXiv:1308.5891[nlin.SI]
[13] Kaup D J 1975 Prog. Theor. Phys. 54 396
Broer L J F 1975 Appl. Sci. Res. 31 377
Svinin A K 2001 Inverse Problems 17 1061
[14] Kupershmidt B H 1985 Commun. Math. Phys. 99 51
[15] Wang S Tang X Y and Lou S Y 2004 Chaos Solitons Fractals 21 231
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 110202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 110202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 110202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 110202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 110202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 110202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 110202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 110202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 110202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 110202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 110202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 110202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 110202
Viewed
Full text


Abstract