Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110201    DOI: 10.1088/0256-307X/30/11/110201
GENERAL |
A Fractional-Order Phase-Locked Loop with Time-Delay and Its Hopf Bifurcation
YU Ya-Juan1,2, WANG Zai-Hua1,3**
1State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2School of Mathematics and Physics, Changzhou University, Changzhou 213164
3Institute of Science, PLA University of Science and Technology, Nanjing 211101
Cite this article:   
YU Ya-Juan, WANG Zai-Hua 2013 Chin. Phys. Lett. 30 110201
Download: PDF(598KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fractional-order phase-locked loop (PLL) with a time-delay is firstly proposed on the basis of the fact that a capacitor has memory. The existence of Hopf bifurcation of the fractional-order PLL with a time-delay is investigated by studying the root location of the characteristic equation, and the bifurcated periodic solution and its stability are studied simply by using "pseudo-oscillator analysis". The results are checked by numerical simulation. It is found that the fractional-order PLL with a time-delay reduces the locking time, and it minimizes the amplitude of the bifurcated periodic solution when the order is properly chosen.
Received: 09 May 2013      Published: 30 November 2013
PACS:  02.30.Ks (Delay and functional equations)  
  02.30.Oz (Bifurcation theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Ya-Juan
WANG Zai-Hua
[1] Blanchard A 1976 Phase-Lock Loops (New York: Jhon Wiley)
[2] Gardner F M 2005 Phase Lock Techniques (Brisbane: John Wiley & Sons)
[3] Khazali R E and Ahmad W 2007 The 9th International Symposium on Signal Processing and Its Applications (Sharjah 12–15 Februray 2007)
[4] Shen B, Mwinyiwiwa B, Zhang Y Z and Ooi B T 2009 IEEE Trans. Power Electron. 24 942
[5] Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 040507
[6] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501
[7] Sun H G, Sheng H, Chen Y Q, Chen W and Yu Z B 2013 Chin. Phys. Lett. 30 046601
[8] Zhang R X and Yang S P 2012 Chin. Phys. B 21 080505
[9] Concepción A M et al 2010 Fractional-order Systems and Controls. Fundamental and Applications (London: Springer-Verlag)
[10] Westerlund S 1991 Phys. Scr. 43 174
[11] Westerlund S and L Ekstam 1994 IEEE Trans. Dielectr. Electr. Insul. 1 26
[12] Magin R L 2004 Crit. Rev. Biomed. Eng. 32 1
[13] Magin R L 2010 Comput. Math. Appl. 59 1586
[14] Ikeda K 1979 Opt. Commun. 30 257
[15] Mackey M C and Glass L 1977 Science 197 287
[16] Wischert W, Wunderlin A and Pelster A 1994 Phys. Rev. E 49 203
[17] Schanz M and Pelster A 2003 Phys. Rev. E 67 056205
[18] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[19] Wang Z H and Du M L 2011 Shock Vib. 18 257
[20] Wang Z H and Hu H Y 2007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 2805
Related articles from Frontiers Journals
[1] Kui Chen, Da-Jun Zhang. Notes on Canonical Forms of Integrable Vector Nonlinear Schr?dinger Systems[J]. Chin. Phys. Lett., 2017, 34(10): 110201
[2] Kui Chen, Da-Jun Zhang. A Short Note on a Differential-Difference Gauge Transformation and a New Spectral Problem[J]. Chin. Phys. Lett., 2016, 33(10): 110201
[3] LV Mei-Lei, SHEN Gang, WANG Hai-Lun, YANG Jian-Hua. Is the High-Frequency Signal Necessary for the Resonance in the Delayed System?[J]. Chin. Phys. Lett., 2015, 32(01): 110201
[4] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 110201
[5] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 110201
[6] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 110201
[7] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 110201
[8] YAN Shi-Wei, , WANG Qi, XIE Bai-Song, ZHANG Feng-Shou,. Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation[J]. Chin. Phys. Lett., 2007, 24(6): 110201
[9] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 110201
[10] TIAN Yu-chu. Adaptive Control of a Chaotic System with Delay [J]. Chin. Phys. Lett., 1998, 15(7): 110201
Viewed
Full text


Abstract