CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Thermal and Structural Study of Mono- and Multi-Layered Thin Films Composed of CuAlS2 Chalcogenide |
Taher Ghrib1,3*, Rawdha Brini2, Amel Lafi Al-otaibi1, Muneera Abdullah Al-messiere1 |
1Laboratory of Physical Alloys (LPA), Science Faculty of Dammam, Dammam University, Saudi Arabia 2Laboratory of Photovoltaic and Semiconductor Materials (LPMS), National School of Engineers of Tunis (ENIT), Tunisia 3Laboratory of Photovoltaic, Semiconductors and Nanostructures (LPSN), Technopole Borj-Cedria, Hammam-Lif, Tunisia
|
|
Cite this article: |
Taher Ghrib, Rawdha Brini, Amel Lafi Al-otaibi et al 2013 Chin. Phys. Lett. 30 108503 |
|
|
Abstract Thin films constituted of CuAlS2 nanoparticles deposited with various deposition velocities in single and multilayers onto silicon Si(111) substrates by thermal evaporation have been studied by lifting their structural and thermal properties. Thermal properties of Si(111) and Si(111)/CuAlS2 structures are determined by using the photothermal deflection technique by comparing experimental and theoretical signals. We succeed in extracting the thermal conductivity, the thermal diffusivity, and the electron free mean path of these deposited chalcogenide layers. For the multilayers, the obtained values of the thermal conductivity are in good agreement with the theoretical data.
|
|
Received: 04 June 2013
Published: 21 November 2013
|
|
PACS: |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
63.22.Rc
|
(Phonons in graphene)
|
|
73.50.Gr
|
(Charge carriers: generation, recombination, lifetime, trapping, mean free paths)
|
|
|
|
|
[1] Jeon P S, Kim J H and Yoo J 2008 Thermochim. Acta 477 32 [2] Akesenov I and Sato K 1992 Appl. Phys. Lett. 61 1063 [3] Look D C and Manthuruthil J C 1976 Phys. Chem. Solids 37 173 [4] Singh A K and Singh K 2007 J. Optoelectron. Adv. Mater. 9 3756 [5] Guoxiang W, Qiuhua N, Xunsi W et al 2010 Spectrochim. Acta Part A 77 821 [6] Srinivasa R G and Asokan S 2010 J. Non-Cryst. Solids 356 1637 [7] Alwan T J and Jabbar M A 2010 Physica 34 107 [8] Yu J Z and Alex Z 2004 Phys. Rev. B 69 104422 [9] Bell A G 1880 Am. J. Sci. s3-20 305 [10] Rosencwaig A and Ghersho A 1976 J. Appl. Phys. 47 64 [11] Salazar A, Sanchez-Lavega A and Fernandez J 1989 Appl. Phys. 65 4150 [12] Ghrib T, Tlili B, Nouveau C et al 2009 Phys. Procedia 2 1327 [13] Brini R, Schmerber G, Kanzari M, Rezig B et al 2006 Eur. Phys. J. Appl. Phys. 36 11 [14] Zhao X, Zhu S F, Zhao B J et al 2008 J. Cryst. Growth 311 190 [15] He Z 2011 J. Cryst. Growth 314 349 [16] Ghrib T and Tlili B 2011 New Tribological Ways (Rijeka Croatia) p 1 [17] Karamitaheri H 2013 16th International Workshop on Computational Electronics (Nara Japan) pp 4–7 [18] Lee K J, Kang J W, Jeon P S et al 2007 Thermochim. Acta 455 60 [19] Kumar P and Singh K 2007 Chalcogenide Lett. 4 127 [20] Velinov T and Gateshki M 1997 Phys. Rev. B 55 11014 [21] Ghrib T, Kammoun I, Yacoubi I et al 2008 Eur. Phys. J. Spec. Top. 153 103 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|