Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108502    DOI: 10.1088/0256-307X/30/10/108502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Electrical Characteristics of High Mobility Si/Si0.5Ge0.5/SOI Quantum-Well p-MOSFETs with a Gate Length of 100 nm and an Equivalent Oxide Thickness of 1.1 nm
MU Zhi-Qiang, YU Wen-Jie**, ZHANG Bo, XUE Zhong-Ying, CHEN Ming
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
MU Zhi-Qiang, YU Wen-Jie, ZHANG Bo et al  2013 Chin. Phys. Lett. 30 108502
Download: PDF(588KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Short-channel high-mobility Si/Si0.5Ge0.5/silicon-on-insulator (SOI) quantum-well p-type metal-oxide-semiconductor field effect transistors (p-MOSFETs) were fabricated and electrically characterized. The transistors show good transfer and output characteristics with Ion/Ioff ratio up to 105 and sub-threshold slope down to 100 mV/dec. HfO2/TiN gate stack is employed and the equivalent oxide thickness of 1.1 nm is achieved. The effective hole mobility of the transistors reaches 200 cm2/V?s, which is 2.12 times the Si universal hole mobility.
Received: 22 April 2013      Published: 21 November 2013
PACS:  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MU Zhi-Qiang
YU Wen-Jie
ZHANG Bo
XUE Zhong-Ying
CHEN Ming
[1] Dhar S, Kosina H, Palankovski V, Ungersboeck S E and Selberherr S 2005 IEEE Trans. Electron Devices 52 527
[2] Tang Y T, Cerrina C, Waite A M, Afshar-Hanaee N, Evans A G R, Grasby T J, Parker E H C, Whall T E, Norris D J, Chang A C K and Cullis A G 2005 Semicond. Sci. Technol. 20 673
[3] Yu W, Zhang B, Zhao Q T, Hartmann J M, Buca D, Nichau A, Lupták R, Lopes J M, Lenk S, Luysberg M, Bourdelle K K, Wang X and Mantl S 2011 Solid-State Electron. 62 185
[4] Liu H X, Li B, Li J, Yuan B and Hao Y 2010 Chin. Phys. B 19 127303
[5] Thompson S, Anand N, Armstrong M et al 2002 IEEE IEDM Tech. Dig. (San Francisco, USA 8–11 December 2002) p 61
[6] Diouf C, Cros A, Soussou A, Rideau D, Haendler S, Rosa J and Ghibaudo G 2013 Solid-State Electron. 86 45
[7] Qin S S, Zhang H M, Hu H Y, Dai X Y, Xuan R X and Shu B 2010 Chin. Phys. B 19 117309
[8] Andrieu F, Ernst T, Romanjek K, Weber O, Renard C, Hartmann J M, Toffoli A, Papon A M, Truche R, Holliger P, Brevard L, Ghibaudo G and Deleonibus S 2003 Proc. Eur. Solid-State Device Res. Conf. (Estoril, Portugal 16–18 September 2003) p 267
[9] Yu W, Zhang B, Zhao Q T, Buca D, Hartmann J M, Lupták R, Mussler G, Fox A, Bourdelle K K, Wang X and Mantl S 2012 IEEE Electron Device Lett. 33 758
[10] Lin F, Gong D W, Ke L, Zhang S K and Sheng C 2000 Chin. Phys. Lett. 17 288
[11] Hartmann J M, Abbadie A and Favier S 2011 J. Appl. Phys. 110 083529
[12] Rideau D, Dray A, Gilibert F, Agut F, Giguerre L, Gouget G, Minondo M and Juge A 2004 Proc. IEEE Int. Conf. Microelectron. Test Struct. (Awaji, Japan 22–25 March 2004) p 149
[13] Zhang B, Yu W, Zhao Q T, Mussler G, Jin L, Buca D, Holl?nder B, Hartmann J M, Zhang M, Wang X and Mantl S 2011 Appl. Phys. Lett. 98 252101
[14] Minamisawa R A, Schmidt M, Durgun ?zben E, Lopes J M J, Hartmann J M, Bourdelle K K, Schubert J, Zhao Q T, Buca D and Mantl S 2011 Microelectron. Eng. 88 2955
[15] Koomen J 1973 Solid-State Electron. 16 801
[16] Sodini C, Ekstedt T and Moll J 1982 Solid-State Electron. 25 833
[17] Romanjek K, Andrieu F, Ernst T and Ghibaudo G 2004 IEEE Electron Device Lett. 25 583
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 108502
[2] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 108502
[3] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 108502
[4] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 108502
[5] LI Yuan-Yuan, LIU Jun-Qi, WANG Tao, LIU Feng-Qi, ZHAI Shen-Qiang, ZHANG Jin-Chuan, ZHUO Ning, WANG Li-Jun, LIU Shu-Man, WANG Zhan-Guo. High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz[J]. Chin. Phys. Lett., 2015, 32(10): 108502
[6] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 108502
[7] LI Di, JIA Li-Fang, FAN Zhong-Chao, CHENG Zhe, WANG Xiao-Dong, YANG Fu-Hua, HE Zhi. The Cu Based AlGaN/GaN Schottky Barrier Diode[J]. Chin. Phys. Lett., 2015, 32(06): 108502
[8] ZHAO Miao, LIU Xin-Yu. Analysis of Capacitance-Voltage-Temperature Characteristics of GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2015, 32(4): 108502
[9] WANG Chong, ZHANG Kun, HE Yun-Long, ZHENG Xue-Feng, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue. Effects of Annealing on Schottky Characteristics in AlGaN/GaN HEMT with Transparent Gate Electrode[J]. Chin. Phys. Lett., 2014, 31(12): 108502
[10] WANG Chong, HE Yun-Long, DING Ning, ZHENG Xue-Feng, ZHANG Peng, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue. Simulation and Experimentation for Low Density Drain AlGaN/GaN HEMT[J]. Chin. Phys. Lett., 2014, 31(03): 108502
[11] YANG Xiao-Hong, LIU Shao-Qing, NI Hai-Qiao, LI Mi-Feng, LI Liang, HAN Qin, NIU Zhi-Chuan. High Quality Pseudomorphic In0.24 GaAs/GaAs Multi-Quantum-Well and Large-Area Transmission Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2013, 30(4): 108502
[12] WENG Qian-Chun, AN Zheng-Hua, HOU Ying, ZHU Zi-Qiang. Optically Modulated Bistability in Quantum Dot Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(4): 108502
[13] Mina D. Asham, Walid A. Zein, Adel H. Phillips. Photo-Induced Spin Dynamics in Nanoelectronic Devices[J]. Chin. Phys. Lett., 2012, 29(10): 108502
[14] XU Xiao-Na, WANG Xiao-Dong, LI Yue-Qiang, CHEN Yan-Ling, JI An, ZENG Yi-Ping, and YANG Fu-Hua. Double-Peak N-Shaped Negative Differential Resistance in a Quantum Dot Field Effect Transistor[J]. Chin. Phys. Lett., 2012, 29(8): 108502
[15] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 108502
Viewed
Full text


Abstract