Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108501    DOI: 10.1088/0256-307X/30/10/108501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources
HAN Liang-Shun, ZHU Hong-Liang**, ZHANG Can, MA Li, LIANG Song, WANG Wei
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
HAN Liang-Shun, ZHU Hong-Liang, ZHANG Can et al  2013 Chin. Phys. Lett. 30 108501
Download: PDF(744KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0 nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers.
Received: 08 June 2013      Published: 21 November 2013
PACS:  85.60.-q (Optoelectronic devices)  
  42.82.Et (Waveguides, couplers, and arrays)  
  78.55.Cr (III-V semiconductors)  
  81.05.Ea (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Liang-Shun
ZHU Hong-Liang
ZHANG Can
MA Li
LIANG Song
WANG Wei
[1] Tkach R 2009 Proc. OIDA Annu. Meeting (Santa Clara CA December 2009) p 1
[2] Thourhout D V et al 2002 Opt. Quant. Electron. 34 627
[3] Buus J and Murphy E J 2006 J. Lightwave Technol. 24 5
[4] Delorme F et al 1997 Electron. Lett. 33 210
[5] Raring J W et al 2007 J. Lightwave Technol. 25 239
[6] Doerr C R et al 1998 IEEE Photon. Technol. Lett. 10 1374
[7] Li G P et al 1996 IEEE Photon. Technol. Lett. 8 22
[8] Ishii H et al 2007 IEEE J. Sel. Top. Quantum Electron. 5 13
[9] Zhu H L et al 2010 IEEE Photon. Technol. Lett. 22 353
[10] Hou L P et al 2011 Opt. Lett. 36 4188
[11] Fujisawa T et al 2012 Opt. Express 20 614
[12] Hanfoug R et al 2006 Electron. Lett. 42 465
[13] Ma L et al 2013 J. Semicond. 34 44007
[14] Higashi T et al 1997 IEEE J. Sel. Top. Quantum Electron. 3 513
[15] Seki S et al 1995 IEEE J. Sel. Top. Quantum Electron. 1 264
[16] Seki S and Yokoyama K 1995 IEEE Photon. Technol. Lett. 7 251
[17] http://www.itu.int/rec/T-REC-G.694.1/
[18] Sato K and Murakami M 1991 IEEE Photon. Technol. Lett. 3 501
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 108501
[2] Qi Wang, Jun-Chi Yu, Tao Tao, Bin Liu, Ting Zhi, Xu Cen, Zi-Li Xie, Xiang-Qian Xiu, Yu-Gang Zhou, You-Dou Zheng, Rong Zhang. Fabrication and Characterization of GaN-Based Micro-LEDs on Silicon Substrate[J]. Chin. Phys. Lett., 2019, 36(8): 108501
[3] Ting Wang, Hui-Yun Liu, Jian-Jun Zhang. Temperature-Dependent Photoluminescence Characteristics of InAs/GaAs Quantum Dots Directly Grown on Si Substrates[J]. Chin. Phys. Lett., 2016, 33(04): 108501
[4] Bushra Mohamed Omer. Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study[J]. Chin. Phys. Lett., 2015, 32(08): 108501
[5] LIU Guo-Dong, WU Chong-Qing, WANG Fu, MAO Ya-Ya. Measurement of the Internal Loss Coefficient of Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2013, 30(5): 108501
[6] CHEN Ming, ZHANG Jiang-Yong, LV Xue-Qin, YING Lei-Ying, ZHANG Bao-Ping. Effect of Laser Pulse Width on the Laser Lift-off Process of GaN Films[J]. Chin. Phys. Lett., 2013, 30(1): 108501
[7] Iftikhar Ahmad, B. Amin, M. Maqbool, S. Muhammad, G. Murtaza, S. Ali, N. A. Noor. Optoelectronic Response of GeZn2O4 through the Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2012, 29(9): 108501
[8] ZHANG Guo-An, ZHANG Dong-Wei, HE Jin, SU Yan-Mei, WANG Cheng, CHEN Qin, LIANG Hai-Lang, YE Yun. A Single-Transistor Active Pixel CMOS Image Sensor Architecture[J]. Chin. Phys. Lett., 2012, 29(3): 108501
[9] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 108501
[10] ZHENG Jing-Gao, SUN Jia-Lin**, XUE Ping** . Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration[J]. Chin. Phys. Lett., 2011, 28(12): 108501
[11] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 108501
[12] ZHANG Yin, DONG Jian-Ji**, LEI Lei, HE Hao, HUANG De-Xiu, ZHANG Xin-Liang** . A 40-Gbit/s 1-to-2 Photonic Data Distributor Employing a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2011, 28(6): 108501
[13] ZHANG Yun-Xiao, PAN Jiao-Qing, ZHAO Ling-Juan, ZHU Hong-Liang, WANG Wei. Design and Characterization of Evanescently Coupled Uni-Traveling Carrier Photodiodes with a Multimode Diluted Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 108501
[14] Gang Chen, Seong-wook Park, I-Chun A. Chen, Clyde G. Bethea, Rainer Martini. Optical Switching of a Quantum Cascade Laser in Continuous Wave Operation[J]. Chin. Phys. Lett., 2010, 27(1): 108501
[15] LI Pei-Li, HUANG De-Xiu, ZHANG Xin-Liang, WANG Yang. Single-SOA-Based Ultrahigh-Speed All-Optical Half Subtracter with PolSK Modulated Signals[J]. Chin. Phys. Lett., 2008, 25(5): 108501
Viewed
Full text


Abstract