Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108401    DOI: 10.1088/0256-307X/30/10/108401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Effect of Using 1-Dodecanethiol as a Processing Additive on the Performances of Polymer Solar Cells
YANG Shao-Peng**, WANG Tie-Ning, SHI Jiang-Bo, ZHANG Ye, LI Xiao-Wei, FU Guang-Sheng
Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002
Cite this article:   
YANG Shao-Peng, WANG Tie-Ning, SHI Jiang-Bo et al  2013 Chin. Phys. Lett. 30 108401
Download: PDF(634KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce 1-Dodecanethiol (DT) to poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester based polymer solar cells as a processing additive. When the amount of DT is 1vol%, the device performance is best. A final power conversion efficiency of 3.1% is achieved, which is an improvement of more than 40% compared to the reference solar cell without DT. To investigate the causes of improvement of the PCE, UV-vis spectroscopy, external quantum efficiency (EQE) is measured and an AFM is used. The enhanced photovoltaic performances are discussed in terms of optical properties and the film morphology.
Received: 23 August 2013      Published: 21 November 2013
PACS:  84.60.Jt (Photoelectric conversion)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  64.75.Jk (Phase separation and segregation in nanoscale systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Shao-Peng
WANG Tie-Ning
SHI Jiang-Bo
ZHANG Ye
LI Xiao-Wei
FU Guang-Sheng
[1] Cai W Z, Gong X and Cao Y 2010 Sol. Energy Mater. Sol. Cells 94 114
[2] Brabec C J, Sariciftci N S and Hummelen J C 2001 Adv. Funct. Mater. 11 15
[3] Zhou Y H, Zhang F L, Tvingstedt K, Tian W J and Inganas O 2008 Appl. Phys. Lett. 93 033302
[4] Brabec C J, Shaheen S E, Winder C and Sariciftci N S 2002 Appl. Phys. Lett. 80 1288
[5] Park S H, Kim H J, Cho M H, Yi Y J, Cho S W, Yang J Y and Kim H S 2011 Appl. Phys. Lett. 98 082111
[6] Peng B, Guo X, Cui C H, Zou Y P, Pan C Y and Li Y F 2011 Appl. Phys. Lett. 98 243308
[7] Li G, Shrotriya V, Yao Y and Yang Y 2005 J. Appl. Phys. 98 043704
[8] Zhang F, Jespersen K G, Bjorstrom C, Svensson M, Andersson M R, Sundstrom V, Magnusson K, Moons E, Yartsev A and Inganas O 2006 Adv. Funct. Mater. 16 667
[9] Yang S P, Yao M, Jiang T, Li N, Zhang Y, Li G, Li X W and Fu G S 2012 Chin. Phys. Lett. 29 098402
[10] Hu Z J, Tang S, Ahlvers A, Khondaker S I and Gesquiere A J 2012 Appl. Phys. Lett. 101 053308
[11] Heo S W, Song K W, Choi M H, Oh H S and Moon D K 2013 Sol. Energy Mater. Sol. Cells 114 82
[12] Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D and Bazan G C 2006 Appl. Phys. Lett. 89 252105
[13] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nat. Mater. 6 497
[14] Zeng L C, Tang C W and Chen S H 2010 Appl. Phys. Lett. 97 053305
[15] Servaites J D, Ratner M A and Marks T J 2009 Appl. Phys. Lett. 95 163302
[16] Zhao Y, Xie Z, Qu Y, Geng Y H and Wang L X 2007 Appl. Phys. Lett. 90 043504
[17] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[18] Yao Y, Hou J, Xu Z, Li G and Yang Y 2008 Adv. Funct. Mater. 18 1783
[19] Yang X N, Loos J, Veenstra S C, Verhees W J H, Verhees M M, Kroon J M, Michels M A J and Janssen R A J 2005 Nano Lett. 5 579
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 108401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 108401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 108401
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 108401
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 108401
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 108401
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 108401
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 108401
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 108401
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 108401
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 108401
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 108401
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 108401
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 108401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 108401
Viewed
Full text


Abstract