CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Bipolar Resistive Switching Characteristics of TiN/HfOx/ITO Devices for Resistive Random Access Memory Applications |
TAN Ting-Ting**, CHEN Xi, GUO Ting-Ting, LIU Zheng-Tang |
State Key Lab of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
TAN Ting-Ting, CHEN Xi, GUO Ting-Ting et al 2013 Chin. Phys. Lett. 30 107302 |
|
|
Abstract Resistive switching characteristics of hafnium oxide are studied for possible nonvolatile memory device applications. The HfOx films with different oxygen contents are deposited by rf magnetron sputtering under different O2 flow rates. The films are amorphous, and the stoichiometric of the film is improved by increasing the O2 flow rate. Current-voltage characteristics of the TiN/HfOx/ITO device are investigated with 1 mA compliance. The bipolar resistive switching behavior is observed for the TiN/HfOx/ITO structure, and the resistive switching mechanism of the TiN/HfOx/ITO structure is explained by trap-controlled space charge limit current conduction.
|
|
Received: 17 July 2013
Published: 21 November 2013
|
|
PACS: |
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
|
|
|
[1] Wu Y, Lee B and Wong H S 2010 IEEE Electron Device Lett. 31 1449 [2] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C and Tzeng P J 2008 IEDM Tech. Dig. p 297 [3] Zhang T, Bai Y, Jia C H and Zhang W F 2012 Chin. Phys. B 21 107304 [4] Watanabe Y, Bednorz J G, Bietsch A, Widmer D, Beck A and Wind S J 2001 Appl. Phys. Lett. 78 3738 [5] Li Y T, Long S B, Lv H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305 [6] Fujimoto M, Ohnishi S and Awzya N 2006 Appl. Phys. Lett. 89 223509 [7] Lv H B, Fu X F, Zhou P, Tang T A, Chen B and Lin Y Y 2008 IEEE Electron Device Lett. 29 47 [8] Lee H Y, Chen P S, Wang C C, Maikap S, Tzeng P J and Lin C H 2007 Jpn. J. Appl. Phys. 46 2175 [9] Wang Z W, Zhang J, Li H W, Dong C Y, Zhao J, Zhao X and Chen W 2011 Acta Phys. Sin. 60 117306 (in Chinese) [10] Park J W, Jung K, Yang M K, Lee J K, Kim D K and Park J W 2006 J. Appl. Phys. 99 124102 [11] Terki R, Bertrand G, Aourag H and Coddet C 2008 Mater. Lett. 62 1484 [12] Huang Y J, Huang Y, Ding S J, Zhang W and Liu R 2007 Chin. Phys. Lett. 24 2942 [13] Goux L, Czarnecki P, Chen Y Y, Pantisano L, Wang X P and Degraeve R 2010 Appl. Phys. Lett. 97 243509 [14] Wang S Q and Mayer J W 1988 J. Appl. Phys. 64 4711 [15] He G, Liu M, Zhu L Q, Chang M, Fang Q and Zhang L D 2005 Surf. Sci. 576 67 [16] Lee D, Seong D J, Choi H J, Jo I, Dong R and Xiang W 2006 IEDM Tech. Dig. p 796 [17] Xu N, Liu L F, Sun X, Chen C, Wang Y and Han D D 2008 Semicond. Sci. Technol. 23 075019 [18] Liu Q, Guan W H, Long S B, Jia R, Liu M and Chen J N 2008 Appl. Phys. Lett. 92 012117 [19] Gusev E P and Emic C P D 2003 Appl. Phys. Lett. 83 5223 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|