Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 107301    DOI: 10.1088/0256-307X/30/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors
A. Azhagu Parvathi1, A. John Peter2**, Chang Kyoo Yoo3
1Department of Physics, VV Vanniaperumal College for Women, Virudhunagar-626001, India
2Department of Physics, Govt. Arts and Science College, Melur-625106, Madurai, India
3Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
Cite this article:   
A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo 2013 Chin. Phys. Lett. 30 107301
Download: PDF(673KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exciton binding energy, interband emission energy, oscillator strength, and some nonlinear optical properties in quantum dots made up of polar semiconductors are computed with the geometrical confinement. The effects of the interaction of charge carriers with the longitudinal optical phonons on the exciton binding energy are included. The anisotropy of the effective masses of holes is incorporated throughout the calculations. Nonlinear optical exciton absorption of II–VI systems based on some polar semiconductors in the presence of LO phonons is discussed. The optical rectification coefficient associated with the intersubband transitions in a quantum dot of polar semiconductors is investigated. Changes of refractive index with the photon energy in a polar quantum dot are found. Our results show that the polar bound excitons in II–VI based polar semiconductors depend on the geometrical confinement, and the nonlinear optical properties strongly depend on the polar materials.
Received: 27 May 2013      Published: 21 November 2013
PACS:  73.21.La (Quantum dots)  
  71.35.Ky  
  77.65.Ly (Strain-induced piezoelectric fields)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/107301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/107301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Azhagu Parvathi
A. John Peter
Chang Kyoo Yoo
[1] Bose C and Sarkare C K 2000 Phys. Status Solidi B 218 461
[2] Feddi E, El Haouari M, Assaid E, Stebe B, El Khamkhami J and Dujardin F 2003 Phys. Rev. B 68 235313
[3] Assaid E, Feddi E, Khaidar M, Dujardin F and Stebe B 2001 Phys. Scr. 63 329
[4] Degani M H and Hopolito O 1987 Phys. Rev. B 35 4507
[5] Hümmer K 1973 Phys. Status Solidi B 56 249
[6] Lewonczuk S, Ringeisen J and Nikitine N 1972 J. Phys. 32 941
[7] Zhao Z R, Liu J and Jia X M 2011 IEEE International Conference on Electronics and Optoelectronics 5 226
[8] Wu Y F, Liang X X and Bajaj K K 2005 Chin. Phys. 14 2314
[9] Antonelli A, Cen J and Bajaj K K 1996 Semicond. Sci. Technol. 11 76
[10] Mukhopadhyay S and Chatterjee A 1997 Phys. Rev. B 55 9279
[11] Aldrich C and Bajaj K K 1977 Solid State Commun. 22 157
[12] Matsuura M and Mavroyannis C 1977 J. Low Temp. Phys. 28 129
[13] Onodera C 2011 J. Phys. Stud. 15/4 4702
[14] Cao Y L, Ban S L and Zhao G J 2003 Mod. Phys. Lett. B 17 909
[15] Rodríguez F J 2001 Phys. Rev. B 64 115316
[16] Senger R T and Bajaj K K 2003 Phys. Rev. B 68 205314
[17] Chuang S L 1995 Physics of Optoelectronic Devices (New York: John Wiley & Sons)
[18] Komirenko S M, Kim K W, Stroscio M A and Dutta M 1999 Phys. Rev. B 59 5013
[19] Pollmann J and Büttner H 1977 Phys. Rev. B 16 4480
[20] Liang X X and Ban S L 2004 Chin. Phys. 13 71
[21] Xia C X and Wei S Y 2006 Microelectron. J. 37 1408
[22] Xia C, Zeng Z, Liu Z S and Wei S Y 2010 Physica B 405 2706
[23] Goldys E M and Shi J J 1998 Phys. Status Solidi B 210 237
[24] Xie W 2011 J. Lumin. 131 943
[25] Zhang C J and Guo K X 2007 Physica E 39 103
[26] Liu A, Chuang S L and Ning C J 2000 Appl. Phys. Lett. 76 333
[27] Xie W 2009 J. Phys.: Condens. Matter 21 115802
[28] Adachi S 2005 Properties Group-IV III–V II–VI Semiconductors (London: Wiley) chap 7 p 233
[29] Yan Q, Rinke P, Winkelnkemper M et al 2012 Appl. Phys. Lett. 101 152105
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 107301
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 107301
[3] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 107301
[4] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 107301
[5] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 107301
[6] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 107301
[7] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 107301
[8] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 107301
[9] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 107301
[10] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 107301
[11] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 107301
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 107301
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 107301
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 107301
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 107301
Viewed
Full text


Abstract