CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors |
A. Azhagu Parvathi1, A. John Peter2**, Chang Kyoo Yoo3 |
1Department of Physics, VV Vanniaperumal College for Women, Virudhunagar-626001, India 2Department of Physics, Govt. Arts and Science College, Melur-625106, Madurai, India 3Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
|
|
Cite this article: |
A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo 2013 Chin. Phys. Lett. 30 107301 |
|
|
Abstract Exciton binding energy, interband emission energy, oscillator strength, and some nonlinear optical properties in quantum dots made up of polar semiconductors are computed with the geometrical confinement. The effects of the interaction of charge carriers with the longitudinal optical phonons on the exciton binding energy are included. The anisotropy of the effective masses of holes is incorporated throughout the calculations. Nonlinear optical exciton absorption of II–VI systems based on some polar semiconductors in the presence of LO phonons is discussed. The optical rectification coefficient associated with the intersubband transitions in a quantum dot of polar semiconductors is investigated. Changes of refractive index with the photon energy in a polar quantum dot are found. Our results show that the polar bound excitons in II–VI based polar semiconductors depend on the geometrical confinement, and the nonlinear optical properties strongly depend on the polar materials.
|
|
Received: 27 May 2013
Published: 21 November 2013
|
|
PACS: |
73.21.La
|
(Quantum dots)
|
|
71.35.Ky
|
|
|
77.65.Ly
|
(Strain-induced piezoelectric fields)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
|
|
|
[1] Bose C and Sarkare C K 2000 Phys. Status Solidi B 218 461 [2] Feddi E, El Haouari M, Assaid E, Stebe B, El Khamkhami J and Dujardin F 2003 Phys. Rev. B 68 235313 [3] Assaid E, Feddi E, Khaidar M, Dujardin F and Stebe B 2001 Phys. Scr. 63 329 [4] Degani M H and Hopolito O 1987 Phys. Rev. B 35 4507 [5] Hümmer K 1973 Phys. Status Solidi B 56 249 [6] Lewonczuk S, Ringeisen J and Nikitine N 1972 J. Phys. 32 941 [7] Zhao Z R, Liu J and Jia X M 2011 IEEE International Conference on Electronics and Optoelectronics 5 226 [8] Wu Y F, Liang X X and Bajaj K K 2005 Chin. Phys. 14 2314 [9] Antonelli A, Cen J and Bajaj K K 1996 Semicond. Sci. Technol. 11 76 [10] Mukhopadhyay S and Chatterjee A 1997 Phys. Rev. B 55 9279 [11] Aldrich C and Bajaj K K 1977 Solid State Commun. 22 157 [12] Matsuura M and Mavroyannis C 1977 J. Low Temp. Phys. 28 129 [13] Onodera C 2011 J. Phys. Stud. 15/4 4702 [14] Cao Y L, Ban S L and Zhao G J 2003 Mod. Phys. Lett. B 17 909 [15] Rodríguez F J 2001 Phys. Rev. B 64 115316 [16] Senger R T and Bajaj K K 2003 Phys. Rev. B 68 205314 [17] Chuang S L 1995 Physics of Optoelectronic Devices (New York: John Wiley & Sons) [18] Komirenko S M, Kim K W, Stroscio M A and Dutta M 1999 Phys. Rev. B 59 5013 [19] Pollmann J and Büttner H 1977 Phys. Rev. B 16 4480 [20] Liang X X and Ban S L 2004 Chin. Phys. 13 71 [21] Xia C X and Wei S Y 2006 Microelectron. J. 37 1408 [22] Xia C, Zeng Z, Liu Z S and Wei S Y 2010 Physica B 405 2706 [23] Goldys E M and Shi J J 1998 Phys. Status Solidi B 210 237 [24] Xie W 2011 J. Lumin. 131 943 [25] Zhang C J and Guo K X 2007 Physica E 39 103 [26] Liu A, Chuang S L and Ning C J 2000 Appl. Phys. Lett. 76 333 [27] Xie W 2009 J. Phys.: Condens. Matter 21 115802 [28] Adachi S 2005 Properties Group-IV III–V II–VI Semiconductors (London: Wiley) chap 7 p 233 [29] Yan Q, Rinke P, Winkelnkemper M et al 2012 Appl. Phys. Lett. 101 152105 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|