Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 104201    DOI: 10.1088/0256-307X/30/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Darboux Transformation and Solutions of the Two-Component Hirota–Maxwell–Bloch System
YANG Jie-Ming, LI Chuan-Zhong**, LI Tian-Tian, CHENG Zhao-Neng
Department of Mathematics, Ningbo University, Ningbo 315211
Cite this article:   
YANG Jie-Ming, LI Chuan-Zhong, LI Tian-Tian et al  2013 Chin. Phys. Lett. 30 104201
Download: PDF(1952KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive the n-fold Darboux transformation of the two-component Hirota and Maxwell–Bloch (TH-MB) equations and its determinant representation. Using Darboux determinant representation, we provide soliton solutions, positon solutions of the TH-MB equations.
Received: 04 July 2013      Published: 21 November 2013
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/104201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Jie-Ming
LI Chuan-Zhong
LI Tian-Tian
CHENG Zhao-Neng
[1] Osborne A 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform (New York: Elsevier)
[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[3] Wu Y and Yang X 2007 Appl. Phys. Lett. 91 094104
[4] Wu Y 2005 Phys. Rev. A 71 053820
[5] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[6] Nakkeeran K 2000 J. Phys. A: Math. Gen. 33 4377
[7] Kodama Y 1985 Phys. Lett. A 112 193
[8] Hirota R 1973 J. Math. Phys. 14 805
[9] Porsezian K and Nakkeeran K 1995 Phys. Rev. Lett. 74 2941
[10] Matveev V B Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[11] He J S, Zhang L, Cheng Y and Li Y S 2006 Sci. Chin. A 12 1867
[12] Li C Z, He J S and Porsezian K 2013 Phys. Rev. E 87 012913
[13] Li C Z, He J S and Porsezian K 2013 Chin. Phys. B 22 044208
[14] Li C Z, He J S 2013 Sci. Chin. Phys. Mech. Astron. (in press) 2012 arXiv:1210.2501
[15] Xue Y S, Tian B et al 2011 Nonlinear Dyn. 67 2799
[16] Porsezian K, Mahalingam A and Shanmugha Sundaram P 2000 Chaos Solitons Fractals 11 1261
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 104201
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 104201
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 104201
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 104201
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 104201
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 104201
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 104201
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 104201
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 104201
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 104201
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 104201
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 104201
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 104201
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 104201
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 104201
Viewed
Full text


Abstract