Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 103701    DOI: 10.1088/0256-307X/30/10/103701
ATOMIC AND MOLECULAR PHYSICS |
Reduction of the Differential Light Shift by the Spatial Periodicity in an Optical Lattice
YUE Xu-Guang, XU Xia, CHEN Xu-Zong, ZHOU Xiao-Ji**
School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
Cite this article:   
YUE Xu-Guang, XU Xia, CHEN Xu-Zong et al  2013 Chin. Phys. Lett. 30 103701
Download: PDF(530KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the spatial periodicity effects on the differential light shift of noninteracting atoms in an optical lattice. Through the Rabi-spectrum approach, when the wavelength of the optical lattice is not magic, a reduction to the differential light shift is expected. The reduction results from the Bloch bands induced by the quantized motion in the periodic potential. Taking the microwave transition of rubidium atoms as an example, this reduction at some wavelengths can reach one order of magnitude, compared to the data without considering the spatial profile of the optical lattice. When the atomic temperature is considered, the differential light shift increases or decreases with temperature, depending on the wavelength of the lattice. Our results should be beneficial for microwave optical lattice clock and precision measurements.
Received: 12 August 2013      Published: 21 November 2013
PACS:  37.10.Jk (Atoms in optical lattices)  
  06.30.Ft (Time and frequency)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/103701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/103701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUE Xu-Guang
XU Xia
CHEN Xu-Zong
ZHOU Xiao-Ji
[1] Cohen-Tannoudji C and Guéry-Odelin D 2011 Advances in Atomic Physics: An Overview (Singapore: World Scientific)
[2] Cronin A D and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[3] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[4] Ye J, Kimble H J et al 2008 Science 320 1734
[5] Derevianko A Katori H 2011 Rev. Mod. Phys. 83 331
[6] Parazzoli L, Hankin A et al 2012 Phys. Rev. Lett. 109 230401
[7] Deutsch I H, Brennen G K et al 2000 Fortschr. Phys. 48 925
[8] Treutlein P, Steinmetz T et al 2006 Fortschr. Phys. 54 702
[9] Lewenstein M, Sanpera A et al 2007 Adv. Phys. 56 243
[10] Bloch I and Zwerger W 2008 Rev. Mod. Phys. 80 885
[11] Kuhr S, Alt W et al 2005 Phys. Rev. A 72 023406
[12] Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 173005
[13] Taichenachev A, Yudin V et al 2008 Phys. Rev. Lett. 101 193601
[14] Katori H, Hashiguchi K et al 2009 Phys. Rev. Lett. 103 153004
[15] Westergaard P, Lodewyck J et al 2011 Phys. Rev. Lett. 106 210801
[16] Campbell G K, Boyd M M et al 2009 Science 324 360
[17] Blatt S, Thomsen J et al 2009 Phys. Rev. A 80 052703
[18] Band Y B and Osherov I 2011 Phys. Rev. A 84 013822
[19] Band Y B and Vardi A 2006 Phys. Rev. A 74 033807
[20] Yu D 2012 Phys. Rev. A 85 032705
[21] Rosenbusch P, Ghezali S et al 2009 Phys. Rev. A 79 013404
[22] Katori H, Takamoto M et al 2003 Phys. Rev. Lett. 91 173005
[23] Zhou X, Chen X et al 2009 Chin. Phys. Lett. 26 090601
[24] Zhou X, Xu X et al 2010 Phys. Rev. A 81 012115
[25] Zheng Y, Zhou X et al 2006 Chin. Phys. Lett. 23 1687
[26] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409
[27] Bloch I, Greiner M 2005 Advances in Atomic, Molecular, and Optical Phys. 52 1
[28] Kaplan A, Andersen M F et al 2005 J. Opt. B: Quantum Semiclass. Opt. 7 R103
[29] Schroeder D 2000 An Introduction to Thermal Physics (New York: Addison Wesley)
[30] Zhou X, Fan Y et al 2010 Phys. Rev. A 81 013615
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 103701
[2] Yi Li, Jia-Hui Zhang, Feng Mei, Jie Ma, Liantuan Xiao, and Suotang Jia. Generalized Aubry–André–Harper Models in Optical Superlattices[J]. Chin. Phys. Lett., 2022, 39(6): 103701
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 103701
[4] Shifeng Yang, Tianwei Zhou, Chen Li, Kaixiang Yang, Yueyang Zhai, Xuguang Yue, Xuzong Chen. Superfluid-Mott-Insulator Transition in an Optical Lattice with Adjustable Ensemble-Averaged Filling Factors[J]. Chin. Phys. Lett., 2020, 37(4): 103701
[5] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 103701
[6] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 103701
[7] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 103701
[8] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 103701
[9] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 103701
[10] Dong Hu, Lin-Xiao Niu, Jia-Hua Zhang, Xin-Hao Zou, Shu-Yang Cao, Xiao-Ji Zhou. Coupled Two-Dimensional Atomic Oscillation in an Anharmonic Trap[J]. Chin. Phys. Lett., 2017, 34(7): 103701
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 103701
[12] Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang. Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2016, 33(10): 103701
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 103701
[14] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 103701
[15] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 103701
Viewed
Full text


Abstract